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IN ‘i3QX3EAMS
---- --

.=

., . .

..
By FrancisB. Hildebrand and Eric $leissner ‘- “““ ‘:-‘- ‘--

, ..-.—

SUMMARY ‘ “-.-”
...........L.._____r,. ---..=-------.-L.—..

The distributionof stress in the cover sheets Of
thin-wallbox beams is analyzed,with regard to theef- .. ._ ~_.
feet of.shear deformationin the cover sheets,IJYthe
method of least work. . .--~

.:”.-...— -
Explicft results are obtainedfor a number of repre-

.-=.=

sentati.vecases that show the influenceof the f.ollow~ng
& factors on the stress pattern: -——----“___ _-.-..

* .-.-’::___
1. Variation o“”fstress in spanwisedirectionas

..9 given by elementarybeam theory.
●

.... . .
2. Value of a parametercalled slieag-.la~aspec,~~~““ ._ .:::-.

ratio Which designatesthe product--of,s>ah-”w”idthratio 6T
the beam.-d of the squareroot of the ratio o“?“effective
shear moduluiand te~sion modulus of the “o-oversheets.-

---------—._’ :-~A-
3. Va~-&eof ratio of cover-sheet”stiffnesstO S~a~–-”---‘“”~~.

web stiffness. . .- ..--,.,--”—--
4.’ Variatio.n.ofbeam height in syan directio~. -—-.. -
5. Variation of beam width in span direction. -,..”..- .-..-=.=

6; Variation of c~ver-sheetthicknessin,spand.i,rec-
tion.

..-., _..=
. --.—

General conclusionsare drawn from the.results ~b- ‘“....
tained. Among them the most importantone appearsto.~~e”-‘ ~“ “---
the.fact that.the shear-lageffpct depends p“rimatiilyon
the followingtwo quantities: -,. .....-=.e..-..-,___-,-—-.++=.. -.. .-

.“

1. the value of the shear-lag agpect ratio.
..

----

2. the shape.of.the curve repre~e:n$ip~t_heproduct “of- ..
the stress of elementarybe-a-mt“heory”.au.c--o”~-t~@covgr-sfiqet——-....-=_-—. . .. ... ....
thickness. .. .— .- .—-.

—.
,. .-. ..- -. .. -,,, -. .,-

--- —
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The basic relationsof the theory are presentedin a
form convenientfor theiist%rminat’ionof additionalsolu-

*“
+ ._

tions.

While the main body cf the work f“sconce;nedwith -–
**

the analysis of cantileverbeams, there are also given ex-
amples of solutionsfor beams on two simple suppcrtsand

.—

for beams with staticallyindeterminatesuppcrt. In the
former case very simpleayproxiplat”esolutionsare ob- ._=.-

tained for problemspreviouslysolvsdby exact methods.
.—
-—

In the latter caee, which has not been treatedpreviously,
it is found that not only the stressdistributionbut also
the-momentdistributionof the elementarybeam th-eoryis —
modifiedby shear lag.

.- -.—
INTRODUCTION

Eurther app~icat~onsand extensionsof a m6th~d given
by--m-eof–the author,s(referencesl-and 2) for the deter- .—-
minatimn of----shearlag in thin=wallbox beams subjectedto b:
bending loads (fig. 1) are presentmlin this pnper. The ●

problem is that of determiningtha distributionof $tress
in the cover sheets of box beams when the shear deforma-

....z.

tion of the cover sheets is taken ‘intoaccount. ●“

Wfth regard to close~ box teams the treatmentis re-
strictedto beams of dotiblysymmetricalrectangularcross
section,it befng understoodthat”slight deviationsfrom
symmet~ycau~e only slight-deviationsof the shear-lag
patteru from that of the symmetricalbeam. It ‘isshown,
however,that by simplymodifyingthe definitionof one
or”theparametersoccurringin the,analysisth++devel~p-
ments are also”applicableto the l~mitingcase of asymme-
try when one of the two ccver sheete is entirely missing. .—, .-— -...:—

part 1 of this work deals-with shear.~agin canti-” “-
lever beams with one.end fixed. By use @’fthe basi’o
equations,which have been derived‘inreference2, ex-
plicit expressionsare obtainedfor the ~tressesin the
cover sheet~i Wjth the help of these expressions,the
influencecf the shape of the load curve.a~dthe influenca
of the crfiss-sectionalcharacteristicsof the beam ,onthe MP
shear-lagpatt-e~nare analyzed. In particu~ar,informa-
tion is obtainedon the effect of tieight,width.,and cover- P
sheet..thicknesstaper, P.ora numbe~.oftypical conditions,
the results are evaluatednumericallyand are repre~ent??d

9

in f.orzaof diagra,ms.
---,.-
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f’ In part II of ~hi-swork the applicationof the basic
@ equationsof the the’oryto beame on two simple end sup-

ports is indicated,and a few such solutiensare given

+ althoughpresumablythe~ are of importanceonly for other
than aer~,nau.ticalapplications.. ...—.—..— -.,. .

The case Of a beam with two fixed ends”is considered
as an example of beams with staticallyundeterrninatesup-
port in part 111 of this paper. 1A this case; which to the
authcrs’ knowledgehas not been treatedbefore, it is
found that not only iE the transversedistributionof
stress affectedhy shear lag but also the spanwisedistri-
bution of lending moments is modified if shear deforma-
tion of the cover sheets is taken into account.‘

*

Finally, explicit referenceismade to the .wrmkof
Kuhn and Cbiarito (reference,3) in which a~proximatesolu-
tions of shear-lagproblems are obtainedby means a a
method that is based on stronger simplifyingassumyticns
than those made for the least-workmethod.

This investigation,conducted.at“MassachusettsInsti-
tute of !l!echnology,was sponsoredby, and conductedwith
financialassistance”fromthe NationalAdvisory Committee
fer Aeronautics.

SYMBOLS . .
●

. ,

a7j cover-sheetlending stress of elementarybeam the@ry

()
M h ,#.. .:.,”’
T:

f,
M bending moment .,

h height of beam . .,. ,,
I moment of inertia of beam (Iw -!-Is)

Iw principalmoment of inertia,oftwo side w,e~sinclud-
—

ing flanges ‘

.. .
*’I moment.of inertia of two cover she~is”ab~uttr~nsverse

‘*
s-.

beam axis .. ,.- :’

* ox spanwisenormal stress,in cover.sheets
.-
-..- ..

* ,,

Xvy rectangular”coordinatesin ~lane of”co”versheets;
x (spanwise)-measur8dfrom t+p to r“oQt, Y (trans- ““ :
verse) measuredfrop middle line to.edge of sheet
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stiffness-parameter
-(
31W + 1

I ‘)
half width of beam

8-93

deformabilityoffuncticngiving effect of shear
cover sheet [o~(x,w) - cr~(x#o)]

cover-sheetthickness

distance of controidof side webs from plane of
cover sheet -. — —.

area of two side webs .,

transversenormal.stress

modulus of rigidity

Youngis modulus

developedhalf width

number or–equallyspacedlongitudinal of area L ‘

~“eff effectivesheet width

length of beam for cantilever;half length of beam
with both ends supported,

()
dimensionlessspan coordinate x~ P

distanc~from origin of coo~dinatesystem to root
ofl..c,antfleverbeam

ratio obheight of beau to height of beam at root

()
h
~’. called hetght function

root height of beam

ratio of-cover-sheetthickn?ssto cover-sheetthick=
nessat ro”ot ~

()tR ‘ cal~ed thicknessfuncticn

cover-sheet--thicknessat ro:otof beam

ratio Of width of ~eam to w,idthof beam at root

(–)
w called width functionwR ‘

-.

.<

s
r.

L
.
..—

L

.

.—
—

.-
.

— .-.—

a ..
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●

k

.

..s
.

~R half of root width of ?eam .. ...
F

“r~
()

bending-momentfunctien ~
o

“.,”
Go elementarybending stress at root section .
f ()shear-lagfunction #

o
mR stiffnessparameterat root section

(0 dimensionlesscoordinateof tip section

K
( f]

auxiliaryparameter A ~ .,

A auxiliaryparameter
A“ ;’ ““-

n variable o’fintegration .

&c dimensionlesscoordinateof point of conc~ntrate~
..

load application

L distance of center of gravity of fTFJn curve from
root of -beam -.._.

Po uniferm Ifiad

-20 concentratedload
ta

8 ratio of successivecover-sheetthicknesses
()~

p(~) particularintegral of differentialequation

A,B constantsof integration

q exponentin width-taperlaw .. —
Y auxiliaryparameter (A/~ ‘“” ..
nl,n2 exponents

C1’C2 constantsof integration.
—.-

dl,da constantsof integration ... .
MR lending moment at root section .

r exponentin sheet-thickness-taperlaw
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fi1~a23a3~a4... coefficients

Me bending moment accordingto elementary
beam theory fequalto M for staij~e
ally dot~rminatbbeams)

Subscripts:

7

r

R

m,rl

part

max

c

o

left

right”

at root sec.tian

general case numbers

particular

maximum

concentratedload

at tip section

—
..—.==

c’
r
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x- IIISTRIBTJTIONO,?.STRESS IN TE3 CoV’El?SHEETS

OF CAN!!ILEVERBOX BZAMS

BASIG EQUATIONSUSED IN SOLUTION”OF PROBLEM

In reference2, hbx teams with rectangulardoubly”-
sy!nmetrica.1cross sectionacted upon by given distrtbu-.
tiens of bending moments were treated (fig. 1). A para-
bolic transversedistributionof the cever-sheetnormal
stresses ax was assumed “ .—-——

(Crx(x,y) = CYb(x)- : - $ ) s(x)

where

Crb(x) = +-
M X h(x)
1(x 2 “

,,

i? is the cover-sheetstress:of elementarybeam the”ory,
-t obtainedwhen the shear deformabilityof the”sheets is

disregarded. The function
.-

(2)

* . s(x) = ~xb,w) - ~x(x,o) . (3)

is a measure for the effect “of”the shear d’eformahiitty
of the sheet, and the value of the’parameter .~

3fw + 1: ,.
m= Iw+Is’ 1< m< 3 (4a)

insures that the state of stress in the beam due to the
superpositionof. s(x) does not give rise to a resultant
moment about the n’eutralaxis of the cross section:

If the neutral axis of the cross section is not at
the same tire’san axis e-fgeometricalsymmetry,then in
general the stress in the twcicover sheets will be given
by two differentanalyticalexpressions. An exceptionis

* . formed by the limiting case of asymmetry of a beam with
open cross section consistingOf two side webs and cne
cover sheet. In this case the cover-sheetnormal stress

A is given by one expressionof the form of equ~tion (1)
. with the parameter m definedby

. . ..- .

\
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31W + 2tw 13W2
[’+5) 1<*<3mn—

Iw
“(,

Iw ‘
+ 2tw ew~ 1 -1--—2A

ew v)

(4b)

where now Iw is‘theprincipalm~.mentcf inertia of the
two side webs, Aw ic their area, and 0w is %-hedistance
of--theircentroid”from the plane,~.fthe c~ver sheet..This
result is establishedby meana o,fthe conditionof moment
equilibriumin the form given by equation (12) in refer-
ence 4. ,.

With the help of,this result, it is establishedthat
if one cover sheet .ofa doubly Symmetricalsectioni.a
removed shear lag in the remainingcover sheet is very
little modified. This permits t-heconclusiont-hatialso
in the intermediatecase of two .unequa>,coversheetsthe
analYBis of the dQpbly symmetricalsectionIeaas to re~e-
vant results.

The shear stress j.n,the sheets c~~regponaj.ngto the
normal stress of equation (1) is de~-8:~inedfrom equi-”
librium conditions.‘The functi~n is determinedby
minimizingthe internalwork of,thebeam (in the work ex-
pression the work of the.trans~~rsenormal stresses CT=
being disre~rded, which amounts to t-heassumptfcut“ha~”–
the sheet is rigid transversely). In this way, as has
been shown in reference2, a differential’equationand
boundary condit3.onsfor s are feund. ll?hedifferential
eqwati,oafor s(x) is of the f?rm

(5)

where t is the sheet thickness, w 1s one-halfthe
sheet width, and G/E is the ratio of–effectiveshear
modulus and Youngls modulusfor the material.

Yor flat unstiffen~dand unwrinkledsheets the value
of G/E will he 3/8. For flat unstiffenedsheets,
wrinkled because of shear, the value of G/E is generally
assumed t~ he somewhat ~ma31erthan that for the unwrinkled

●

☛

4=,

I
“--1

I

.-

—

f_
P

s

●

—.

.—-

.s

w

.
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-“?.

,?

sheet. The sane Is true for corrugatedsheetswhere
G/a = (3/8) (w/wd) if w~ is.,thedevelopedhal”fwid~””““ “
for flat sheet-corrugatedsheet combinations,and for
sheets stiffenerby n (say n~5), equally spacedlon-
gitudinal of area A. where (G)E) = (3/8) 2wt/(2wt+ nA).

The %oundary conditionsfor s(x) are of the follow-
ing form:-,

At the free end of the beam,
,,

ts=o. (6)‘-.

At the fixed end of the beam, ..
.-,

In addition,it is useful to have condit”i’onsfor the case
when at some section of the beam a discontinuouschange
of sectionpropertiestake place, with or withcut simulta-
neous applicationof a concentratedload at this section.
If the values of quantitiesimmediatelyto the left or
right of the sectionareindicated ~y subscripts t and
r, the followingtransitj.enconditionsare found:

t~ St = tr Sr (8)

‘r d 21Rlr-15 Wa d
(trsr)-_35m ——

trsr=-—
()

-++ (t~C7’_’_,r) ‘g)
tr dx r-21 tr dx ~t

Equation (8) expressersthe conditionof continuityof the
sheet normal-stressresultantsand equation (9) is the
conditionof continuityof the spanwi.sedisplacementcom-
ponent, in the form requiredby the l“east-w”orkmethod.
Ea,uation(9) correctsand generalizesa corresponding9 r. equation mentionedin a foot’nntein reference 2. .

a The shear-lagproblem M now reduced to the solution
. of equations (5) to (9) and to the substitution of the

results in equation (l). ~

.-

.

—

—

.-
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From equation (1) an expres~~onfor the effective
sheet width ‘eff is obtainedin the form .

~=
/w?Jx,y) tly

w w CYx(X,w) =

which is v~lf& at those sections

1 + 20-=(X,o),—
3 3 ax(x,w)

(lo)

where O-x(x,w)> UX(X,OL
Nquation (10) can also be’writtenin

- m-l s(x)——
‘e ff +d
--T ‘“’&)* (1OEJ . _

-.

For the edge and center sheet stressesin eqUatiOn ..;
(10), fmllows f“romequation (1)

.—

\
O-X(x,o) ah(x) m s(’~)

rib(l) ‘ym’zob(l)

ax[x,w) (@f}
!Tb(L) -(’-:)-=CTb(l)

The applicationof the pr.ece~ingset of basic equa-
tions to a series of representati.~ocases and the conclu-
sions drawn from these applicationsform the body of the
followingdevelopments.

Before proceeding.to examples,it has been found
helpful to introducedimensionlessvariables of a kind ex-
plained ~n the followingparagraph.

DIMXNSIONIJZSS3’ORHOF THE BASIC EQUATIONS

*

(12)

(13) e
.

.

(14-)
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.

T(g) = & ““ (15)
., ,.,

w(g) = + “ (16)

F(g)

f(~)

Go “-

f+$x)

s(x) “

~o

= (o%)R

.,
(17)

(18)

(19)

In equations (13) to (19) it 2,sunderstoodthat lIe rep-
resents the span 7 of the beam, if it’scross sectionis
uniform, and that In tha case of taperingcross section
Ie is the ‘extendedNspan, that is, the distancefrom
the origin of the coordinatesystem to the root of the
team of length t, and the origin is chosen accordingto
the simplicityof the analyticalexpressionsfor W or T
or both. a. is the value of tfieelementarybending stress
at the root-section.

It is convenient
in the followingway.

to represent,Y(t) in equation (G)
From

+ Iw, 18 s h2tw, m = (31W + 1s)/1 :
.

follows
. .

3-a%(x) = ~ m M(X)
c

.-
r

and consequently .

3 -m
3- mR

(20)

where M(t) is the moment distrj.butionas function of the
dimensionlessspan coordinate.

Introductionof,the,dimensionlessvariablesinto the
differential.equation (5) leads to
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The boundaryand transitioncenditiens become, if ~ = to
is the coordinateof the free end and ~ = 1 is the coor-
dinate of the fixed end,

T(EO) f(~o) = O (22) .

Tlfx = ‘rfr .

mr d (Trfr)- 21mr-15@ d ~fr=——
T= at

——
r)

3 ~ (TrWr) (25)42mr-21 Tr,.dg Wa ‘~ d~

‘?
*

. .

The stressesof equations(11) ~11~(12) and tho effective
width as given,by equat-ion(10) now have the form

(26)

&Jx,w)
0-0 =i(g) + (1-3‘(’) ,

and

It is useful to hava the following simpleresult with .
TO 1*regard to the superpositionof srh~a.r-lagsolutions. ,

I
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also

.seof the linearityof the problem, there follews

..

Mm(l) fro(t) + ~fn(~) fn(

Mm(l) + Mn(l) (29)

BEAMS WITH UNIFORM CROSS SUCTION

EFI?ECTSOF LOAD DISTRIBUTIOIJ,OF WIDTH-SPANRATIO, AND

OE’CROSS-SECTIONALCHAR&CTERTSTICS

Develo~mentof Equations

With

H =W=!l = 1, L = te (30)

the differentialea-uationand boundary conditionsreduce
to ..

-—
=.

daf
d~=

(31)-
(32)

- K2f

f(o)

3A2

o

31= o (33)

(34)

obtain

--

—

where

The tran

35~ _
35c12- 4

.

on condit

21
2m +

ions

c- ~z?

(+)iiw
utiliz

f =

,siti

5’
whil

K’

St

.
= 6

ill

A=

ablee to
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the ~oltitionfor concentratedloads are not essentialin
this case sinc”eooncentratiedlo-adscau convenientlybe
consideredas limitingcases of distributedlqads. The
general solutionof the system of equations
has the form

.(31) to (33)

,[

+- r sinhK(t-11)I’ti(fi)d~
)

(35)
..
0

and in particular,if l?~(o)= o,

(36)’

.

R?
1,

2.

3.

,.

..

0
b.-.

In extensionand partial recapitulation’of the work
.% –

reference 2?,the shear-lagfunctiQns f corresponding
the followingbasic loading conditionsmay be given.

.
“w

Uniform loading , -

Loading increasinglinsarlyf-remtip to root

Concentratedload at-~~int ~,E
/

(37)

(38)

Subscriptsare used here aid throughout=-thepresentpaper
to identifycases treatedexplicitly.

Sy ev&luationof equatiOn(35),

.

*

(40)
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)
~ sinhk~
2 J-E “(41)

cosh ~.,. -—
.

In particular,at the fixe’dend wherS, as has been stated
in reference 2, the effective,width ~s in general small-
est,

6Aa
[ “’

..
tanh~-~+ 1fl(l) = —

K. ... co.shK 1
(40&)

(41a)
.—

f2(l) = %[f’ ‘~) tanh~ -~ 1.

f3(l) =*1 1
[
tanh K -

sinh K ~c
- Ec 1.

(42a)c@shl$

In reference2 an approximateexpressionwas given for
f(l) which “ledto the theorem that, for beams of uniform

cross section’,the rati~
(w), ~ ,..:___is approximatelypro

portional to f where L is the distance of the center
of gravity of the F“(~)-curve,which for beams of uniform ,
Cr@8S section coincideswith the load curve;.“fr@rnthe-ftxe~
end of the beam. This approximateresult is also obtained
by utting the contents of the brackets”in equatio’n’s(40a)
to t)42a equal to 1. While this result‘1s“s-uffic”~ently
accurat~“forlarge.valu8sof K (say ~,> 12) it le.ad~
for.smallervalues of K to an underestimationo-ftbe ef-
fectivewidth. Thb generalresult referred to appe~rs to
be the first statementof the fact that the amount of
shear lag depends on. w/IJ rather than on Wjl.

The general formula,which may be quoted here for
completeness,Was .

-,--

w’

(1

1- (m=l)h ~~~ ““:. -eff—= (43)w
J

1 + (3-m)A ~~
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Evidence will be presented,later that, in the general case
of taperingbeams, finequivalentresult can be statedwith
the same degree OT @pkoximation if II refers to the
(TP)lt-curveand w be~omes WR.

NumericalExamplee

●✎
✎

—

G

In order to obtain a quantitativeidea of the results,

a beam has been taken for which (sG/B)l’%/w) = 7.5; 60 -
that, when G/E = 3/8, the learnis two and one-halftimes
as long as wide. It is furtherassumed that the side webs
and cover sheets contribute,equally to the total stiffness,
so that m = 2. On the”basis of these data, the siress
distributionhas been calculatedfor

(1) a uniformlydistributedload

(2) a linearly distributedload

(Sa) a concentratedtfipload
B*.

(3b) a concentratedload at midspan .

Diagrammaticalsketchesof these and af.all otherTroblems “
.

treated numericallyIn this work are given in figure 2.

Throughoutthe restof the-presentpaper, indivi.~ual*.
stress diagramswill be describedonly by the case number
of the problem designatedbeneath-eachsketch of figure 2. .!
In all the stressdiagrams, B refers to t-hestress of
the elementaryt-fieoryof bending, @ to the actual edge
strese, and M to the actual stressalong the middle lf’ne
of-the sheet.

In order to obtain the results the values ofi-theaux- -
iliarYparamf$ers A and K, which are defined by equa-
t“im (34), = 0.690, K = 6.231.,are first calculated;.
the function f(!) is then calculatedaccordingto equa-
tions (40),to (42). If these values are in.treducedwith
the simple expressi,ogsfor P(c) into equatien (26), the ,
values of the normal stress”esaleng the edge and along the - . t
center line of the cover sheet”sIarechtainod. The results
are given numericallyin table I apd as diagrams in ffgura
3.

?
These diagrams show clearlyhow shear :ag Q.eP9P@~. ●

greatly on the shape of.theload curves, since tb,emaximum-,~ “
stressesin the four differentcases are 11, 2.8,24~ and 21
percent higher than those given by elementarybeam theory.
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8
*

Concerning”the ef.feetof m = (31w’+ I.)/I, an aver-
‘agevalue in the practicalrange (Iw = Is) has been
chosen for the calculationof “thecurves.

——.-
Calculationsin “-

reference2 indicate that shear lag decreaseswith incr-&as-
ing in.and vice versa; in other words, the more apprecf-

.-
.. able the contribution,of the cover sheet to the tota~

stiffnessof the beam, the more appreciableis the shear
lag. The magnitude,o-fthis effect in the range 1+5 <“”m
< 2.5, (0.25< (l~/Iw)”< 0.75) is, hetieve~,su$ficibn%ly‘--
small to permit worlkingwith the averagevalue m = 2. —

In t~b.leII values are giyqn of the effectivewidth
at the built-in end for the th_r.~eloading case?.,concen-
trated tip load, uni,formload, ‘andlinearly increasing““
load, as functionsof .tharatio“--~~ - -and also as

J
273S‘Wfunctions of the ratio — —O In this comparitionit is

‘.32G L —.
assumed that m = 2. The quantitativeeffect of a varia-
tion of the stiffnessparameter m is investigatedby

calculating
(=L ~

for:t~.econcentratedtip-loadcase

with m = 1.5
-,

and m = 2.5. The results are plotted in
figure 4 as,-functions“of ~J

----
They show that i.nfact

(%), ,. ,for the case of a concentratedtip load”give-sa
.

()
‘effslightlyconservativeestimatecf

—
for other

w R
load conditionsand that the.effect of a vari.atien~f m
is small:

Case of a Sine Moment‘Curve
,. . .

AS a further example of a she~r-lagproblem for a beam “-“’
● with uniform cross section,a c,aseconsi”der.edby ~-ounger
.* (reference5) is taken and analyzedwithin the frame OT

this theory. The dimensionlesselementarybending-stress
functionis given by

● “.

3’rom

(44)

(45)

it follows that the l@”adingin this case consistsof a
concentratedload at the free end and of a distributedload
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having a resultantof equal’magnitudeand oppositedirec-
tion as the concentratedload. (That the two load Bye-

~.
s

ternsbalance eaoh other follows from the fact that
Fql(l) = O).

*
Since it had been shown tha,t‘shearlag iS q,u~teeen-

sitive with regard to changesin load distribution,‘this
load case may behave with regard to shear lag rather dif-
ferentlyfre~ the three typical cases con~ideredpreviously.

—

The solution of the shear-lagequations(31) to (33)
i,sobtainedfor T4 in an espec~allysimple-form. ‘Y
substituting 3A%* 11 in equation (31), a particularsolu-
tion”is.found in the form

(46)

~nd it so h~.pponsthat this particularsolutionsatisfies
already the boundary conditionsgiven in equations(32)
and (33) and thereforerepresentsthe complete solution.

The ‘stressesof equation(26) become here

Ux(x,o) ( mhx
. a. =

T)
;t,sin —

\l -1+?
(47)

(48)

A comparisonof-this solutionnumericallywith the corre-
spondingsolutionsfor the other loading casaesshows,
with m = 2, Aa = 0.690,”~ = “6[231, ~ = 0.041

1+
()T

that tho increasein maximum stressas given by equation
(48) amounts to only 4 percent as comparedwitihincreases
%etween 11 and 24 percent for the other loading conditions.

Case of a Sine Series Moment Curve

A more general load condition,that is, ~ne which can
he made to representall load conditions,is obtainedby
assuming

.
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Ca
v

1’5(~)= ) An Sin-(2n+l)~ 5 (49)
d.
n=o

The introductionof equation“(49)int? the”different’ia~
equation (31) gives

.-

Ca

7 An
f5(f) =3A24 12-sin (2n+l):t (50)

n=o i+
((2n;;) fij

The convergenceof the series of equation (5o) is, howe~er)
slow; whereas one of the,advantagesof tho least-workmeth-
od is that it permits avoidanceof such series develo~-
ments, which in an exact thOorY are ‘he Only ‘n~wn ‘cans

. of representingthe salution. .,

As an example for the det.erminatiogaf the coeffi-
cients, the case of a concentratedtiP load maY be cons-
idered where F(g) = ~ and where convergenceis st~~l.
better than, for instance,in the u;~~~rm or linearload
case. The Fourier developmentof = ~ is obtained
from

r

1 .

~ sin (2m+l)~ 5 d~
●J 10

=
~f

An sin ~2m+l)~ ~.sin (2m+l)~ f df
L ,

in the form

and, consequently, .

.-., .-
—

sin (2n+l);t
(52) --—

“.

(53)-
—

—.
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The convergence-of e~ua~ic~(53), while rapid for small.-
Values of ‘ES becomes slowerwhen [ approachesunity.
In’order to show that the solutionactuallyrepresents
the concentratedload case, it is necessaryt-oshow that

where co

I

2 sin (2n+l)~
F’(E) = Cos (Zn+l); t (54)

(2n+l);
o

—

—.

This series,every term of which vanisheswhen ~ = ls
has the requiredpropertieswhen it is rec~”gniz6dthat

—.—

the series,repre~entingthe function r!(g) = 1 in the
interval o<~<,l, jumpsat the point ~ = 1 and rep-
resents Fi(~) =-l in the interval 1<[<”2.

Example of the Applicationof the8uperposition Principle 9.
-*-””

The applicationof the superpositionequations(28) *
nnd (29) is shown by consideringa beam with uniform loa~
P. and a concentratedload -P. “at-bhe‘86-OtiOn”x = xc. -“-—

—
The moment functionsare

pots
ML(E)=; poxa=~ga”

.

(55)

snd it followsin accordancewi’thequatisn (28) that

.
~Fl(~) - P02(1-EC)is(g)

FL,3(~J = ‘ “Potz
.

Pc:t(l-tc)
..

—.
2 s*

Po (l-kc) ~3(f) “ . #Fl(f) -
pqL/2

.-—-.=
Pn (I-EC)

(57) “

1- —.
po2/2
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where l?l and lj’~are defined by equations(37) and (39).
In accordancewith equation (29),

If, for a numerical”example,as %efor-e;

m= 2, ~ = 6.23i

and ,

then, with the case 3b for a concentratedload at midspanj..
IF

FI,ab = ~Fl - ~3b

1

(59)
. fx,zb = 2fl - f1,3b

From table I, t,hevalues of T and of f are obtained
and, by introducing-thesevalues into equations (26) for

.-

the stresses,a stress pattern is ebtainedasbgiven in
figure 5.

ETFECTS,OFTAPER IN HEIGHT FOR OTHERWISE

UNIFORM CROSS SFJC!!?ION

.

.

The only difference between the case of beams with
taper in height and the case of beams without taper is
that, in equations (5)and (7), ah is modifiedand, in
equaticn (20); the variability.o~ H(&) .ha~.to,be taken –
into account. Thus, fOi given F(’~) and H(~), the mo-
ment functionis given by

(6(2) /j”= ~. ._
Otherwisethe en’tir~‘theoryfor the beam with uniform
cross section can be directlyapplied.

.-
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In additionto the reshlts of the preceding sectica, 9
*,rhichcan be interpretedin this place by equation (60), n
the case has been calculatedin which the height tapers
linearlyaccordingto the law ..

-*

(61)
-.

so that the tip height is o~e-hal.fthe root height. Con-
centratedtip load and uniformlydistributedload have
been assumed. Then, accordingto equation (60)

and
—

The shear-lagfunctions f(g) as:given by equation (35)
become

,.

and
0

_f. = .--+

+4
/
‘-sinh~ (~-~) d~

(1 + Il)s }
(65)

...0
The functions f~ and f~ have been determinedagain
with the followingvalues of the parameters i

b
1_——.

J
6G~ =-7 ~- ~ = ~ ~

. -
Ew”’ # ~ = 6.”231“’ m

c ..,.-

The integralsoccurringin equaticns(64).ancl(65)have
been evaluatedby means of SimfiBon~lSrule. The reeultant
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*
u

+

Gtress distributionis given in table”III and in figure 6.

A comparisonof these results with the results f@r a
beam with the.same load distributionhut with no taper in
height (figs.3(a) and 3(c)).shows that the maxfmum stress
increasesare reduced from 11 to 6* percent and from 18
to 15 percent owing to the variabilityof ~1~) and the
subsequentchange of shape of the F-curve. .

. .+- _

IIFFZ!CTSOF DIS~ONTINUOIJSCHANGES IN COVER-SHEETTHICKNESS

Beams with constantwidth and piecewise constantc~ver-
sheet thtcknessand web stiffnessare consideredin ‘th-3.s
section. For every bay with canstant T and m the dif-
ferentialequation (31) applies and for the ti

7)
and root

sectioristhe boundary conditionsof equations 32 and
(33) applyl At a sectionwhere T and m changethe
transitionconditionsof equations (24) and (2”6)occur, and
equation (25) simplifiests

(66)

The pr~cedure for obtainingthe explicit solution
may be exemplifiedfor beams consistingof-two bays, one
tip hay of length 11 and sheet thickness tl and one

—

rsot bay of length ta and sheet thickness ta. We as-
sume that the stiffnessparameter m and therewithA ‘
and K have the same values in both baYs. .

The thicknessfunctionis

aad,,accordingto equation (20).,

.-.-

~67j:----

(68)

If

“(69)
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the system of .eUuatiens to be solved.becornes

(7’0)

(72,73)

(74)

For the soluti,onof bhe syetem of equations(70) t--c(75),
the eneralsolutions of the differentialequations(’70)

f’)and 71 shouldbe first written in the form

fr =3 Aa ‘
T (

Ar sinh K5+Brcosh K~+p(~)
)

(77)

—

—
.

-’%

Accordingto ea,uations(72), ~73), (74), and (75), the
followingconditionsserve to determinethe constants ●f
intograt-ion;

B? +P(0) = o. (78)

(
?? Ar ‘(l)cosh K + Br

)
sinh K + ~ . X2 ~MR (79)

.

— -——

(81) -
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Equations (76) to (81) are evaluatedfor three cases
of concentratedtip load and of uniformlydistributed”
load as follows: - ,--

. . .
,.

case ‘m” K 6 ‘-L ‘p’(!’) M~~) ..

[ 2 MR
—

8 2 ~~“6’.231 ‘ 2 0.5 “. o t
,.

9 2
6Ae

6.231 i2’ ‘..5“““.-~ e=

}
10 ‘ 12’ 6.231 .“6~ .2 ‘:9 .- -.. K , E2-.

. ., . .

Tor the shear-lig“functions f there--isobtained...... -

{

0.02141 sinh 6.2315, 0< 5 ~ 0.5 ..—--
f = (76)
B 2.377’89cosh 6.231~-2.37657sinh 6.2315, 0.5g~~l.

[

-0.18990 sinh 6.231~+0.2133,4cosh.6,.2?15
-0.21333, 0--<g < 0.5”(77)

f= =
-2.40681 sinh 6.231~+2.409446osh 6.231~

-0.10667,
. 0.5< ~ < 1---.,.-

[

-0.20671 sinh 6.231~+0.21333cgsh 6.231~
—.

f ,’ -“0”.21333
10=

, 04E<-O.9 (78) -
-20.15981s$nh 6.231~+20.16258cosh 6.231E

.- -0.10667, 0.9< E41”

.The functions t ,correspondingto equations(76) to
(78) have been calculated for various values of ~ and
from equations (26) the correspondingstresseshave been
calculated. Ta%le IV and figure 7 contain tiheresults. -.
It should be noted that, instead of the st”ressesthemselves,——

the’stress resultants T ~
.——_ .

have been ‘plottedl--Thus,in

order to.obtainthe stress~sfr.ornfigures 7(a), ‘7(%),and
———-

7(c) the parts of the curves in the first bay have to he
.--.

t=magnifiedby a factor,q”z” ,It is seen that, in tho
. . .

cases of equal bay length, the ,thictiesschange has almost
no effect on the stressesat the fixed end; while, in
the ~xtreme case .ofthe very much sh~rter.root bay-,there
is a noticeableeffect with an increase ef 21 instead of
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.

1.8percent for the co.rrespondlngbeam “withuniform crois
section (fig.3(a)). AS is to be expected,an.appreciable
shear-lageffect occurs near the transitionsectic!nand it
i,sseen that the percentageof stress increaseiS as high.%
as the correspondingincreaseat the root section. .

3FFECTS OF LINEAH TAIHIRIN.WIIJT!H .-

Developmentof Ea-uatie~s

The theory is developedin this sectionfor beams-in \
which the widthvaries linearlywhile the ccver-sheet ‘
thicknessis as&umed to 10 uniform. The thefirycan %e ap-
plied to problemsin which the sheet thicknessis piece- : ~
wise uniform by means of the transitionconditionsof
equations (24) and (25).

The more g~neral taper la’w ~
.,. . l?= P (71)

is first intrcduce”d-intodifferentialequation (21} with

T= constant (80) -

?!hereis then O%ta.iaedthe differentialequation

fll+ 4Y2q
&-

2Y2q (2(&+l)* -“# ~ = 3A2F!I (Gl)~sq

which, for a~y valtieof can be inti~ted in terms of
~ssel functions. Of theq~onstantsoccurringin equatiion
(82), ~ and K ar,odefined in equatien (34) and

Y2=EA2- 1

The conditionsat the free end and at the fixed end
follow-from equations (22) and (23) in the form

f“’(go)= o (83)

f](l) -1-apzf(l) = 3X%(1) (84) .

~cr the transitionccnditicns,there fcllo%”sfrem

.

f
n

\

. --

—.

—

-.
e

. . .

,.-

...;

.=

9
.

*

.
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equations.(24)and (25).

Tlfz = Trfr (24)

and ‘ . .

‘Ftlfzf + 2qY12fJ-3A1 = f=’ + 2qYr2fr-3Ar2F= (85)
.

In the case of linearlytaperingwidth for which

q-=1

the differentialequation (81) takes a fcrm which @an be
integratedby an expressionof the type

,.

[

n= n=
f(g) =’3A2 Clf - Cz ( + )?(5)

1
(85)

where 3~2p(5) is a particularintegral and the.rermafn-
der the general solutionof the homogeneousequati@V_~““.
The substitutionof equation (86) in (8_l)gives the ex-%

~ponents —.

.
1 2

J’
1nl = — - 2Y + —.+ ,4mYah2+ Ka

2 4,.

-.

.—

.-

.-

-. —
.

(87a) —

nz ‘+-2y2-~ -(87’;
and the’furiction ..

i
L.-l

...

then“

(90) -

By the introductionQf the bolution (86) i~to the
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boundary conditionsof equations(83) and (84),”the follow-
ing equationsthat determinethe constants cl

t
and ca .

are obtained

(91”)
“w“–

[. ‘(nl+2Y2)cl-(n=+2T2)c2= l?’(l)-p’(l) + 2?ap(l)
1

(92)

In the case in which a concentratedload is applied
t tc$at a section = it is convenientto proceedas

.—
—

follows: Let

—

.

—

[ :.(nL+2Y2)dl-(g2+2W~)’da= 3“(1)”-“&i(l) +2Ya~r(l,)
-----1

(97)

The evaluationo~equations (94) to (97) is best accom-
plished by fir-stsolvingequations. *and(96) for
dl - Cl and da - C~ and then determiningthe constants
themselvesfrom equations(94) and (97).

●3..=

NumericalExarnplis
. . .

B@JaIriswith concehtr”atadtip.l-Oad-(ca“ses11 to 14),- . ●

T-hefollowingvalues of ihe paramet,er~are chosen for cases -
11 to 14:

●.
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r13G2*
—.
E w~

34) and

(98)
.—.m

equ.at

= 2,

ions (

=15

(82),

..

Fr‘Om

ha
om

= 0.6901

equatirn

nl =

.ce

9“ Y2

(87)

o.,3803, tcz

12

=

.81

155.2817

.57

(99)

(ioo)

and

Also

fr

Y

12.2946, na=-
,-

sin

M(g)
h!~

--!.”!-=--f0
w“ (101)T1=1,

it
.

follows from equation (20) that

102)

.

.

The f~llowinghei
corresponding l?,

ght
ar
function
e chosen

s, which are listed with the

H=l, I’11 12- E.—1 (103)I

H

H

F12 (164

-(1051’ E–113 = .

H

equations(
integrals,

2~-1
= T--’

90) and

. F14

(87),

= i

for

..-

ing

“-(106).

partic-correspond, l?ram
ular

the

P 0.01273 (107)11

P12
0.02546 + 0.03881 1.08)—..

-.

P13 o.01273 (109)
.

I?14 o (110

The coefficients and are next determinedfrom
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ea,uations(91) and (92). This Tr,ocessis-carriedOut In
detail for.case 11 to illustratethe procedure,while fcr
the other cases only the results are listed.

By substitutingfirst in equaticn (91),
.

2
-n~”-nl CL - 2 C2 = -0.02546,

and then, by substitutingin equation (92)

F11’(1) = 1, PI1l(l) +-272 pll(l) = - 0.0030485

(nl + 2Y2) c1 -.(na + 2Y2) C2 = 1.0030485

For the constantsoccurringin the twc equations,

2-nl = 0.00019905, z-n~ = 7209.515, nl + 272

= 13.05513, na + 2Ya = - 12.05513

so that altogether

I

.
.

*

.

—

.
.

0.00019905Cl - 7209.515e= = - 0,02546 (111)

13.05513 01 + 12.05513 C2 = 3.0030485 (112)

The relativemagnitudeof-the coefficientsin equation

(111) makes it numericallymost convenientto solve by
successive.approximationsof which the first is found suf-
ficientlyaccurate in this and inmost of-the follswing
analogouscases. qhus, as first apprcximat-i.ont

*

Ca = 0.02546= 0.0000035320
7209.515

‘(113)

and, with this value of C2 substitutedin equaticn (112)

1c1$=— (,:.0030485-13,05513
12.05513x 0.0000035320)

= 0.076828 ‘ (114)
,.,



.
.

9

iTACATechnicalNote No. 893
.-

31 “--
,, ... .-.’..-...’ .-

A resubstitutionof this value @f c1 in equation (111)
gives as,,,second appr.bx.i~atiQ~,::.:., .

.. ... . ..--- :<’. . ... . --
1“c==’ (0.02546-7209.515

o..000i99o5”x&0768.2@.,
,,.. .’ ‘, = 0.0000035321 . ‘“--.. ,

,.. .
showingthat ~he first approximat.ierifor C2 was exact to
four significantfigures. It is convenientto use,.ln-
stead of C2, the value of ,.

2-na Ca = 0.0254’79 (119)

With the introductionof equations (114) and (115) into
equ?tion (86) with pll frem equation (107), there results

f11 = 0.0246 ~-1 + 0.1591 ~la-ags- 0.0528(2~)-~a-ele(116)

In exactly the same manner the solutionsin the otger _. ._

h

..—

three cases are found as
—

f12= -0.0527-~rl+0,0803~-2+0.0067~1a”a95-0.2160(2~)-;a“8~6.
(117) -

. .(118).-
,P

f13 = - f=l

(119)
-.--.—. —

Expressionsfor the stresses.argobtained3Y again
substituting f(g) in equati@ns(26). The numericalre-
sults are contained.in table ~Fand in figure 8:. If”these
results are comparedwith the correspondingresuits for

--r.——.

a beam with concentratedtip load and no width taper
(fig. 3(c)),~tiIs seen that shear lag is substantially

~ less pronounced in cases 11 and 12. In case 13, for which
the beam dimensionsare such that F(E) (and thus the
stress O“h) decreasesfrom tip to reot, a conditicnoc-
curs which might be called negative shear lag, in that in-
stead of an increase of edge stress due to shear lag”“a
decrease of this stress takes place with_a corresponding”
increase of stress in the interior of the “she&-t.In case
14 (for which ne diagram is given) the variation of beam
height h is so chosen that the stressacc~rdingto the

—.

--

——
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elementary.thao.rydoes not vary along th:espan and no shear
lag occurs in this case.

.
This is in accordancewith the ●

general resu~t of reference2 that no shear lag occurs
when the product of sheet thickne$B t
ab

and bending stress
does not vary along the span.; With regard to case 12,

n

ft is noted that shear lag is quite appreciablein the tip
half of the learnwhile it decreasesalmost to zero toward
the fixed end, a behaviorwhich is in contrastwith the
results obtainedin the cases of uniform width.

Beams with unif~m~y di.st~ibuted load (cases15 t-o18L.- ._
The s~me dimensionsare assumed aridthe procedurefor ob.
taining the solutiQnsis the same for cases 15 to 18 as
for cases 11 to 14. The moment functionnow takes the form

and thus

The followingchoicesare made for the height
with that fcr F

H=l,

H= E*

H = 2~~1,

H = 2-E-1!

I’romequation (90)

P15 = 0.01273 ~-~ = - p11

P16 = Q.05093 ~–= - 0.03881 ~-e

P17 = P~

P18 =0 ,

and for the shear-lagf~~ct-ionsf:

(120) _
..-

‘ (121)

functiona.ntL

(122)

(123)

(124)

(125)

(126)

(127)

(128)

.“
.

.

—

%..

(129)—

._
.—
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T
.

f16 =‘-0.0264~-1+0.4753~1a*ag5+0.0526(2~)-12”s16 (130)

f le =’o.1o545-1-0.0803~-a+0.31Y5&z*as5+Oo1105(2~)-la”ple
(131)

f f17,= 11 (132).

f “=:1s 0.31718~~a-ag5 - 0.00006(2~)-~ao*le (133)

Introducing f into equation (26) again #givesthe stresses
as in table VI and in figure.9. It is seen that,in ca-se
15 in which the y-curve is most similartc the corresp-~nd-
ing curve for the beam of uniform cross section (fig. 3(a)),
the stress pattern as modifiedby shear lag is.also-rnest
similar but that the taper in width -reducesthe maximum-
stre6s increasefrom 18 to 15 p~rcent”.ID cases’16and 18,
the F-curve approximatesthat of the beam with uniform,cross
sectionand concentratedtip lead and a.correspondingsim-
ilarity is observedin the stress patterns.’In case”17,. . ‘thecurve is concave upward and”shear,lag.is furtherre-
duced. In general, it can be said that these e~amplesdo
not permit the conclusionthat “widthtapermaterially af-
fects shear lag beyond a modificationof the “F-curv.e,s..

Beams with linearly increasingload (cases 19 to 22).-
The beam dimensionsare again assumed to le the same and
the procedure for obtainingthe,solutionsis also the
same as in previous cases. .

The moment function is now

M(E)
MR

= (25 - 1)=
.

so that

(134)

“(135)

The following choices are’made for the height function H
. and with that for F’r .

H’= 1, FZ9 ,=8(= - 125 + 6 - ~–1 (136)
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H= Z_[-:; m~,== 4~2 -“45+ 1- “ (13.9) *.
.

The”carhespon:dingfunctions f are obtaipedexactlyas
in the precedingparagraph8 -*—

fIs = -0.2172~a+0.0246~–l-+0.8394~~~“2g5+0.0014(2~)-12’e16
(140).

f20 = -0.1582~–1+0.0803~-a+’0.6391~12”ag5-000052(2~)-la“Pie
(141)

f21 = f15 (142)

fza = -0..1086~a+0.6573~1a”2s”5+0.0270(2~)–1a”s16 (145)

Numericalvalues of the functions f and of the
correspondingstressesare given in table VII and i,nf5.g-
ure 10. It is again seen to what extent taper reduces
the magnitudeof t-heshear lag that would occur for a beam
with uniform cross section. v*

~ms with concentrate.dload “atmidspan (cases23 and
—

ti.- The same values of the parametersare ass”umedas In .
the preceding cases. ‘Them~ment @nction is now

For the height”function H is chosen

(144)

--- <
.

..--—— :

..,—

(146)

(147) .
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The method of solutionby means of equations (94) to (97) -
is given explicitlyfor case 23, while the corresponding
results for case 24 are listed.

First, from equations(146) and (90),

%,=3 = o, p = 0.038196 ~-1
r,az (148)

Equations (94) and (97) %ecome

0.00019905cl - 7209.515 Ca = O (149)

13.05513 CII+ 12.05513 da = 3.00915 (150)

and the transitionconditionsof equations(95) and (96) .____
become

(4/3)-nl (all-cl)(4/3”)-n2(da-c=)= -().050928 (151)

~2.29457(4/3)-nz(dl-cz)+12.81569(4/3)-na(d2-ca)=4.05:093
(152)

Solving equatiens(151) and (152) gives ..
-nz

()
&
3 (dl-c~)= 0.13533, dl - Cl = 4.65020 (153) “-

4
() ‘n2 (d~-ca)z = 0.18628, d.2- c= = Oe004660 (154)

From equation (149) followsthat, in first appreximaticn .

and hence, from equation (154) .

d2 = 0.004660

Then, from equation”(150),

dl = 0.22619.
,

and, from equation (153),

cl’=- 4.42401

. (155)

—

(156)

(157)

--—- --

(158)

From substituting”this c1 in equation (149) a secondap-
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proximation follows:

c#gf=- 0.00000012 “

and, from equation(154),

da = 0.0046659:

and, from equation (150),

dl ~ 0.22619 .

and, from equation(153),

c1 z - 4.42401

(i59)

(260)

(161)

1
1. !

.

.

(162)

—
It is seen t-hitthe sscondapproximationsagree suf-

ficientlywell with the first appr~ximattonsto ~ermit
discontinuingthe process. . .—

In this way the followingfinal results are obtained .
for cases 23 and 24: —

.
—1-9.1600~12”2g5+o.oo12(2g)-12”’16, 0.5< f<o.75

f;23 ‘-’ -.~163) .-

10.0791~-~+O*4683~za”29=0. Ch397~-~a”szsj0.75<~~1
L. .- .—
i -lo.7170g1=”2g,5+o.oo21(2g)-la”816, o.5<t<o.75

f24 =

t

.1 .- (164)
-o.lo54g‘1+0.2410~‘2+0.3240~1a*2g5-.0.0153~–la”ezs,

o.75G~<l

Numericalvalues of the functions f and of the correspond-
ing stressesare given in table VIII and in figure 11. It
5.sagain observedthat the effect-oftaper is a reduction

.=

of the maximumpercentageincreaseof stressdue to shear
lag in the beam of untaperedcross secticnwith correspond- “
ing load (fig.Z(a)). .

~eams”withuniformlydistricted
<.

load and increased .
taper (cases25 to 28).- In.orderto observet.beeffect
of increasingthe rat-goftaper,’beamswith unl~orm load
distributionare assumed to taper.in the followingwaYe:



?
b

.
●

.

●

for
m=
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cases 25,
2,

. .

26,27, and 28, respectively.

A2.= 0.6901, Va = 0.3803

37

- (165)

(166)
-.

(167)

(168)

As ,hefore,if -.
.-_

while,.from equation (34), for cases 25 and 26,

(99)

~a = 69.01409 (165)

and, for cases 27,and 28,

K2 = 38.82042 “.(170)

‘l!heexponentsof equat-ion(87)in the ,solu%ienof equation ____ _
(86) ar-eIXew,for cases 25 and-26~,. ..—

,.

Ill = 8.18714, nz = - 8.70826 (171) --
. .

and for cases 27 and 28,

nl = 6.15582, na = - 6.67695 , (1’72)

The calculationscarried out in exa~tly the same way as
has been indicatedfor the sample case 11 show that

1? (4f-1)’ 16 8+~-1
25 = d d

(173)
9E= —-– 9

f a6=- 0.0065~‘1+0.3855~8-Ie7+o-0260(4~)–s=vos (174) ..—..: .._,—__
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f26=0.0520~-1-0.0202~-a+0.1529~s’~s7+0.1153(4~)-8”708 (176)
1

—

I?27 = t’ (177) “

fa7 = 0.2994 ~s”l=e (178)

3’28 =“1 (f179)

f28 ‘“ o , 1.(180)

Numericalvalues of the funcfions f(~) and of the corre-
sponding stressesare given in table IX and in figure 12.
The increasedtaper has reduced the maximumpercentage
stress increasestill further. An indicationthat width
taper is most signi’f?cant.i~smuch as-it modifiesthe F-
curves is given by”case 27, for which the Y-curve i.siden-
tical with the F-curvO of the beam with uniform crass sec-
ticn and concentratedtip ~oad (fig. 3(o)), with the re-
sult that the effeets of shear lag are of almost identical
ne,ture. Case 28 is again a case for which TI’=1 so that
no shear-lag ,occurs.

Beams with uniformlydistributedload and diff-drmt
~~f.ffnessDarameters(cases29 to 3~ .- Beams with uni,form
load distributionare taken with the same taper law as in
cases 11 tfi24. The resultsare to he comparedwith the
correspondingresults for cases 15.and 16, which are iden-
tical with cases 29 to 32 except for the value of the
stiffnessparameter m.

By determiningfirst the values of the auxiliaryparam-
eters for m = 1.2 and m = 3 it ‘iSfound, from equations
(34) and (82), that

m= 1.1 : #=1.5fj9& y~=O.72$5,K~=853J3961 (181)

m= 3: Aa=0.&118,Ya=0.2353,Ka=%2.64706 (182)

and from equation (87), that for the values of the expo-
nents,

m= 1.1 :nl= 17.9787, na = - 19.8845 (183)

m= 3 “.:nl= 9:7278, na = - 9.6690 (184)

.
●

�

.

. —

—

—
.

.

By carryingOUt the remainin~calculationeas detailedin
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case 11,
T

it is found that ... -....-.

m=l.1 : H = 1, F2~ = 4E.- 4 + g-l r=y== . (185)

f -0.0263~-%0.7275~170g7g+0.0525(25)-lg*‘=6 (186),S9= . -—

m=l.1 : H = 5, %=4- 4 t-’ + ~-2 =~1 G (187) —
-... ..

f30=o.lo51~-1-o.’0791~-2+CL4799g=7”g7g ...~-

+0.1016(2~)-ls”Bes (188)””““

m= 3 : H = 1, F31 =T2~ (189)

f -O;0266~‘X+0.3621~9.728+0:0527(2~)-s*66g (19@)
31=

m= 3:11= f, ~sa = ~30 (191)

f 32=0.1063~-?-0.0824~-2+0.2355Eg’72e
,,

+0.1168(2~)-g”6Gg .(192)

Numeri~alvalues of the functicrisf(~) and of the
correspondingstreseesare given in ,tableX and in figure
13. A.comparisonof cases 29 to 32 with cases 15 ~nd-~6 ““”
shows that decreasing m, that is, making the side.webs
relativelyweaker,’tands to increase shear lag.and‘vicS”--’–
versa. It is noted, however, that by choosingvaluas for
m’ as extreme as the present ones a larger effect is ob-
served than is likely to nccur in practice for whichj as
has been previously stated,the value of m is larger
than 1.5 and smaller than 2.5. The fact that, for the.
limiting case, m = 3, the.actual edge-stressdistribu-
tion coincideswith that given by the elementarytheory is
explained.bythe.vanishingcontributionof the cover sheets
to the total .%eamstiffness. . .

—.

EFFECTS 03’SIMULTANEOUSTAPER IN WIDTH

.AND COVER-SHEETTHICKNESS

●
✌✎

In this section,beams are consideredthat are tapered
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the laws
?
.

w= fq, T = trjm = constant ‘ (193)

Introducingequation(193) into the differentialequa-
tion (21) gives

fl
fit+ (r+4y2q)~ -

[ 1
r+ 2’Yzq(2q-r+l)~ - Ka—

;
~:o.

and introducingequation (193) into equaticns“(22)and
(23) for the boundary c~ndit-iansgives

-.

—.
..

tor f (5.) = o (195)

f’(l) + (2qY2+r)f(1) = 3A2 [1’1(1)+ rl ; (196) .
.

if use is ‘madein equatian(396) of the fact that 3’(1)= 1.
From equatiens(24) and (25), if for the PresentPurPoees

---.
it is assumed that W and T are continuousso that only .
the effect of a concentratedload remains,it f@llowsf~r
the transitioncontitlonsthat . .-.

fz(~c) = fr(fc) (197)

and, if e uation (19’7)is utilized in the evaluationof
?)equation 25 ,’

The Case of Linear Width Taper “

AS in the preceding section,“anespeciallysimPle
class of solutions is obtainedin the case of linear width
taper where q = 1. The solutionof equation (194) is
then of the form

(199)

where now the exponentsare given by
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lr-, 2Y2 +.
1

(l+r)2nl=—-
2 ~

+ 4rn’Y2As”+K2 (199a)

..
1 -r @ . (l+r)ar12,.-.
2 4

+ 4m’Y2X2+Ka (195’b)

and p(~) is defined as ~efore hy means of equations(88..)
to (90), where the first factor v, in the numerate-rof
equation(90) is to be replacedby V+r.

Thus it is seen that, in the case of linear width taper
and thickness taper according to equation (193), the calcu-
lation of individualexamplesproceed in entirelythe same
way as in the cases o“flinear width taper aridno thickness
taper. Some calculationshave been made here for beams with
linear sheet thicknesstaper, that is, r ‘=1.

Beams Wiih uniform load (cases33 and 34),- In addi-
tiontotq=r ’=l, the followingvalues are assumed for
the rema~ningparameters

so that the top view of tha~e beams is identicalwith most
of those treated without thicknesstaper. The two cases
considereddistinguishthemselvesby differentheight ta-
pers, namely,

H = 1, !?33= (25-1)2= ~ - **-1 + ~-z “---‘““-
~a (201) ‘-

H= E, P34= b;;l)’ . ~g-’ - 4[-2 + [-3 (202) .

For the auxiliaryparameters,

A2= 0.6901, Ya = 0.3801, Ka = 155.2817
.

.

.
.

and.from equation (199), for the exponents
.,

nl = 11.8244, n= = - 13.3455 (203)--”
‘, ._
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The remainingcalculationscarriedthroughas in the preced- ~ . ,
ing sectiongive

01

f3~=0.0525-O.0396~-240,4497~*=”8~4+(),10~8(2~)-13*346 (204)

f 34=0.1584~-2--0.1080~-3+0.2978~11’’8a4+0.2303(2~)-13’346
(205) I

The distributionof-stressescorrespondingto these
results is containedin table XI and in figure 14.

A.comparisonof case 33 with case 16, which has the
same F-curve, shows that the th?cknesstaper is responsi-
ble for increasedshear lag and that the percentagein-
crease of the maximum stresshas risen from about 11 to
about 15 percent, indicatingthat the neglect of thickness
taper is not a conservativeprocedure.

A comparisonof caees 33 and 15, which have the same
“TF.-function,shows that tho stresspatternsare mcst simi-
lar and that, in both cas~s, the @aximum stress increase
amountisto about 15 percent. This result Indicatesthat
the shape of the !lJI’-curverather than the shape ●f the Y-
curve determinesthe shear-lagpattern. Further evidenOe
to supportthis view is obtained ~f cases 34 and 16 are
compared. For these cases,the T1’-curvesare identicaland
again the maximum stress increaseis in both cases the same
and amounts to 11 percent.

Beams with no spanwise Var~ation of ext-e fiber
stress accor~ingto elementarybeam theory (cases35 and
~.- The effect of thf.cknesstaper iS further emphasized
by consideringtwo cases for which

??(f) =1 (206)

so that, if T is const-ant,thertiwould be no shear lag.
The two cases consideredare distinguishedfrom each other
by differentdegrees of taper in t“hefollowingway:

(207)

—

.
.

.

.-

. .
.

-..

and, for case 36,
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f

6~2~=75 1—— —=1, ,H=.1.’
EwE”’le (208)

It follows, from the definitionof F(t), that the external ‘
mement distributionis given by

(209)

so that in both cases there is a unifoprnspanwiseload
distribution;while, ‘f~rc&se-”35,there is in additiona
concentratedtip moment of amount M (~)/MR=l/4 and a
concentratedtip force of magnitude Mt(~)/ME = 1.

l’orcase 35, all the necessary parametersare given
by equation (203). For case 36,

~2 = 38.8204, nl = 5.71400, n= = - 7.23513 (210)-~ ‘-

and the shear-lagfunctions f(~) take on the f~rm

f 35‘= 0.0131 + 0.1507~1z’ss4- 0.0132(2&)-13”:4d (211)..

f 36 = 0.0501 + 0.2652 ~597=4 (212)

The stressescorrespondingto eguations,(211)and (212)
are given in table XII and in figure 15. ‘Stressin-crb”iises.—.._
of 6 and 11 percent are found owing to the cover-sheet
thickness@aper, while neglect hf the variation of T
would have indicatedthat there”was no shear lag. dase 36 - ‘
Is particularlyinterestingbecause the TI?vcurvecoincides
with the correspondingcurves in cases 27 and 3a, in which
there is enly width taper or no taper at all. In all three
of these canes, the stress increaseis the same and equals”‘“-”
11 percent. This evidencefurther sup~ortsthe contention
that the shape of the T3’-curves’and the value of the aspect--- -.
ratio parameter (E/G)l’2(w/l) are of main importancOin
determiningthe amount of shear lag.

The Case of Sheet ThicknessTaper Only

If constantwidth is assumed, that is, if
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.
(194)eauatiOn

f “ fl (K= f 3A2 (~!1 I!’) (213)+ + +

and can be written in the ffirm

[

-r
e

solution
1

1
(frf)’ Kaf=

ion

(213a

The this quat
r+l

t“2
,.. -.

I_ (Kf) - C2 I =+1 (K~)+p(~)
2 .—2 1

(214

--.
.

. —.

.—

●

where the fac
where Ir+l

2
kind of order

be a constant

kr+l which
Y
kind.

3A=
the mo

is inserte
dified.Bess

d:
,e,l

for conven
function

,ienceand
cf the first

is an integer 1..-+ would

replacedbymu

.s

.ltipleof

the corre

z+ and must be

ridingfunc”tionof t-hesecond

The
tion of pa

function
,rageters

p(g) is found
in the form

-bythe method of vari.a-

$

[~

r+ln-. .+
}
)“

(215)

(1 ) 1p{!!) I
-i=

[
q-r(?fk)

According
integration

to equati
are deter

on
mi

s (195)
ned by

and (196 the constants
of

.

.

.

.

f(fo) o (195)
and

1

1

t=
[

(2163 7?

1
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The transitionconditionsat the
7
lace of a concentrated ..

. load are ae before equations(197 and (198).

In view of the fact that the modifiedBessel functions -
#

of order n +* (n = i, 2,.....). reduce to certain combi- -
nations of h~erbolic functions)it followsthat when

. . r = o,, 2,4, ... (217)

.
.

.

.
.

.

the solutienof equation (214) is expressiblein terms of
hyperbolicfunctionsand reduces,’.asit should,to the pre-
viously derived solutionfor learns,withno taper when r = O.

,,
Wien, r=i,. %hatiis,for linear taper, t-hemo~ified

Bessel functionsare of the first order and tables for
these functionsexist. (Tablesalso exist for th6 func-
tions,correspondingto r = 3, 5, ...). “:.,, . .

It must he said that there still rem~ins the difficulty
of evaluatingthe particularintegral of equation (215).
Id mosticases this evaluatio~wil’1be possible only by nu-
merical methods as exemplifiedin the section on beams with
taper in height and otherwisenonvaryingcross SeCtiOn.

In certaininstances,“however,the particularintegral
may be ebtainedin a very simple maziner,namely, by ch~ns-
ing the @isturbingfuaokteh 1’ in such a way that either
the right-handside orthe first term of the left-hand
side of equation (213a)vanishes.
(213a) reveals that

“Inspectiono$ equation

is of the nature indicated. Substitutingequatien (219)
in ,equation(alZa) gives the equation

[

I

g-r(grf)’-
1

- K=f= 6A=
[ 1
(3+r) al~ + (1-rj”a=~-r (220)

which is satisfiedby

f 6A2
[ .1
(3+r) al~ + (l-r) aa~-r”

part ‘= - ~
(221)

or, in accordancewith equation (214),

—. —.
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[

r+l ~“+~“1

P(t.) = - + (Z+r) alkT * (1-r) a#.-T_ (222)

From equations(219)and (20) it follows that for the
moment distributionswhich give rise to the simplepartic-
ular $ntegrals

●

✎

●

se that for beams“ofuniformheight (H = 1) one of the
solutionsapplies,irrespe~tiveof the value of r, to
the case of uniform load distribution;while the type of
the other lo&d distributionsdepends on the value of r. 1

Gertainparticularcases amdng”the class of solutiong
includedin equation (219)will be investigatedfurther in
the followingdiscussion.

Beam with linear thicknesstaper (case 3’7).-If uniform -
height is assumed, from equation (223)

.

Jf(t.)= Al ‘a
- (.’ * ~a t’ - to’

MR 1- fo’” “1-to4

wh~re the constantshave been so edjustedthat tho tip 5ec-
tion is moment free. From

JWfJ W50 ‘“ 4 !03
=.-A> + AZ (220)

MR 1- toa 1- [04 ‘

it followsthat, Ulll~SS
..

8.=0 .. (226)

—-

the loaiisystemincludesa concentratedtip load. If equa-
tion (226) is assumed, it is seen from

‘(227) .
,

.,,,’
-.

that the qffectsof a combination.of“uniforman”d”parabollc
load distributioncan be analyzedwith the solutionob-

,

tained. . .,.



NACA.TechnicalN~te No. 893 4’7

.
.

&

c
.

.

●

If; in the followingdevelopment,.attenti~nis re-
strictedto the case of a uniform load, that is, if it iS
assumed that

A= =az = 1, Aa = al = a2= ab = O (228) “

(229)

(230)

It seems worth while in this connectionto state aXplic%t-
ly that, for linear height tap=.r (H = t),.F37 corre-
sponds to the ease of linear load distribution.

From the boundary conditionof equation (195),which
is now -...

‘1(o)f37(o) = o .
;231).-.

it follows that

Ca=o (232) “-

and, from the other boundary conditionof equation
(216), that .

.

which, in view of the law of differentiationfor Bessel
functions

fi [:’n(x)] = ‘in-;(x)’ ~“[;nln(x)l = ‘nrn+’(x) ““

becomes

c1 = &

so that, finally,

6X2 Il(K~)
f37=~ 10(K)

,(233) “-
.

(234)

This solutionwill be discussedwith two solutiensoh-

., .,,,.
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1

.—

tained f
agraph.

0r qua,dratict.hickn.esstaper in bhe followingpar-

~ms Wit
When r = 2,

h Quadraticthicknesstaper (cases 38 and 39).-
the moment distributionof equatinn (223) can

be written in the form

(235)+ ,B2 +

If, as befcre,

o

is
the
to
for

assumed it is seen that, for uniform heigh
three terms in eauatinn(235) correspond,

a load increasingaccordingto .acubic law
m load, and to a linearly‘increasingload.

t- (H=l),
respectively,
, to a uni-

I?oruniform load distribution, .
.

.

—

--

(236)E38 1

and, for linear increasingload,

7)F39 (23

Frolfiequation (222 ? follows that

3--
‘!2s 238=0

and, in acCordance with equation (214),

i
1!

[
c13ha (239)

(240)

f 3s +

1
3??

[
f 39 c1

The Bessel functions of order 3
—s2 may wri

(cosh “)sinh x
x’

fs-,————
‘ ~h

.’

(sinh
x-

13——
a

coah X
x ) (241x
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It follcws from the-free-endconditicnof equation (195)s
for case 38, that

—

[ .1 f
211

li.m - c@13(~8)+$ =0s ca=- ~ (242)
~—>o

-—2 ,

and, for case 39, that

C2=0 (243)

From the fixed-endconditionof equation (216)7 ‘t ‘ollOws’ . ..
for case 38, that .

which can be transformedinto

c1 K IA(K) - Ca K I@ = 2

and, for case 39,

(244)

c1
{[ 1}* f% ~#@ = 3

~=.

which can he transformedintn —

c1 K I*(K) = 3 (245)
,.

where

(246)-

Thus, finally,

{

2- /% I_*(K)2
f 13(~t) + fi~a(Kf)
3’ = 3A fi I*(K) z -a i

L _=J+ 2(Kg) 2 . (247a)

which can be transformed into

{
6h2 l-coshKf— (

sinh Kg
3e = ~~ sinhK )cosh Kc - -~

+ sinh Kg -
}

ccsh Kk + -&
K[ Kt

(2473)

.
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(248a) “:
% ““”

which can be transformedinto : .

9A=

[

sinhK ~

1

+
f cosh Re - ~ (248b)39 = K~ sinh K

Discussionof the numerical.resultis.f9r sheet-
~LiCknese taner,- Numericalevaluationof the solutions
for cases 37 to-39 w~ll further cenfirmthe fact that the
shape of the TF-cur.veis the decisive factor in the ef-
fects of shear lag. Since —.

—

this fact will.be”brought out by a oamparisonof the re-
sults for cases37 to 39 with the”resulte th~t were o~-
tained in the sectionfor beams with unfform and linear

9.

load distribution,For which .
—

.
.

If, for a numericalcomparisonofihe stateO of
stress,the same structuraldata are assumed as were used
previouslyfor beams with uniform”and linear ioad distri-
bution, namely,

*—

J 6G 1
m= 2, —– = 7.5T ‘K=6..231

Ew

t~e stressesalong the edge of thd sheet and along the mid-
dle line of the sheet are calculatedby inserting the nu-
merical values of the functions F and of the functions
f i.nequations(26). The results-areg5.venin table XIII
and in figure 16. A comparisonof the stresspattern for “-
case,s37 and 38 with the stress patternfor case 1 (fig.
3(a))showe that llttle similarityexists among the three- .
stresspatterns,exuept thst the value of the percentage
increaseof the edge stressL% th~ fixed en~ 10 vqry near-
ly the same in all three cases. If, however, instead of
a comparisonof the stresspatterns,a comparisonof the
stress-resultantpatterns is made; that is~ if the dis-
tributionsof ~~/~o .are comparedinstead of the distri-

.
.
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“butiQns .crf~/a. it i’sseeh”that.t~b variation’nf Ta/cTo,
isvery nearly.the e,amein all thr,eocases. .

The same resuit~may be c’bservedw~en the results of
16(c)..)are ccmpar.ed with the results of case

;a?~i~; $?%.. . ‘ -. -4 ..

It is worth while to note further that, in case 38
(fig. 1“6(%)),in whi,ch.accord.iBgto elemenb.ary.beamtheQrY
the stre’esdoes Uot vary in the’spanwise.direction,the
maximum stress increa,sedoes not occur at the fixed end
but near the free end of the beam where the sheet thick-
ness decreasesto zero. This evidenceagain indicatee
that, while the distributionof strees near the fixed end
of tho b,eamcan-be rather closely predicted.te be that of
a beam with uniform cross section,the same-isnot always
true at other sectionsaf the ‘span.

—— _.....
An additionalcomparisonof the states of stress in

beams with and witheut thicknesstaper is made by calcu-’
. lating,.theeffectivesheet width at the fixed end of the

.
‘beam as R function of the parameter

r
~E .—.—

and of-“-““‘“-‘-”

G g ‘her. +:,

32G t

. is again the distance of the center of

gra~fty of the (TF)fi-ourvefrom the secticn ~ = I.. For
this comparisonit is assumed.that nl=2, so that aga~n’ -.—— --——.—

—

The numericalresults cbtainedare .g$venin table XIV and
in figure 17.

I’t.isnoted first that:, .when the results are cc?npared
wfor correspondingvalues af —, there is a pronounced

differencebetween the cases jor which iF =-~2’ an~ t“h~
cases for which TF = t3. If, however, the results a’re.-

.* comparedas functionsof ~p it is seen that in ill cases
the agreementie close for not too large values of ‘ -
‘%@w;

...
d ——

32G L
all curves in fact start out w’ith.th~.”sarn-e-i-n~-

“tial slope and a ~otic.eabledeviation ~f’the curves from.

—
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each other occurs only for rather.large values cf ~;. .
AS far as calculationof the effectivesheet width .

near the fixed end of the beams is concerned,therefore,
all the evidencepoints to the conclusionthat it is per-
missible,with sufficientlygood approximation,

*..
to baee

the calculationfor moderately taperedbeams on the model
of a beam with uniform cross sectionof which the width
equals the root width of the aotual beam and the le”ngth
eg,ualsthe length of the actual beam; while the effects of :
taper are i,ncorp~ratedby takingfor tho model beam with
uniform cross sectiona function l’(~) identicalwith the
T!(~)F(~)-functionfor the actual beam,

If ~nly.~tisstirn%t~Qf the effectivewidth is desired
the approximationmay be carried still further by consid-
ering a model beam with uniform c“rosssection,which car-
ries only a concentratedtip load and has a span length
the same fractionof the span length of the actual beam as
the rat-ioof the disti~-ceof the center of-graQityof the
to~ curve .-from.thefixed end of bhe beam to the span
length of--theactual bea~. Within the accuracy of this es-
timate it iS then possiblewithout:any calculationto
take the result from the curves in figure4,

While a very simplegeneralr“esult”is dedqced for part
of the ~roblem, it is also seen fr-omthe work of this sec-
tion and of the ~receding sectionthat the percen~ge of
change in the stressesall along the span may be appreci-
able when there is taper, especiallysheet=thicknesstaper,
and that to obtain quantitativere~sultsin this respect it
appears Becessaryto Bas”ecalculationson a beam model
rather cleselyapproximatingthe dimensionsof the actual
baam.

II - SH.EA.RLAG IN BJ3AMSON TWO SIMPLE SUPPORTS,

—

-...
.

..-
—

.

—

WITHOUT OR WITH OVERHANGINGENDS

It is possible to use the gen~ralrasults of the
least-workmethod,which are contaiwd in the first two
sectionsof part I, for the analysis of beams SUppOrt8din .
any staticallydeterminedway, in particularf%r the analy- .
sis of %~ams on two simpleend supports. The on~y modifica-
tions concernthe boundaryconditionsfor the shear-lag
functions f(f).

.
While for cantile%-erbeams T(5)f(g) van- -

ishes at the free end and a displacementconditionis pre-
scribedat the‘fixedend, beams with two simply supported
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or free ende will haVe Tf Vanishingat both ends as a ...._ _.
consequenceof the cenditionof vanishingedge bending
moments. The examplesthat follow are inte~dedto “show==......-----
how the method is applied. .-

BEAMS OF UNIFORM CROSS SECTION

ON TWO SIMPLEEKD SUPPORTS

The differentialequation of the preblem is as hefOre
equation (31). ~or the %eniling-mornentfunction F(g), it
is now more convenientto write .

(249)

If the cooril~natesystjemis Selected se that the ends of
tho beam have the coordinates = 1t tand = - 1 and if
1 denotes half the spa,nof the beam, the boundary condi-
tions are, instead of equations“(22)and (23))

f(-1) = o, f(1) = o (250)

At the point of application EC of a concentratedload,
the transitionconditionsof equations (24) and”(25) OCCUr
as before. Explicit solutions.will here be obtainedfor the
followingload conditions:

(a) A cosine lead curve, for which

As in case 4, it is seen that

“o=+cos~’
(251)

..(25”2). --

satisfiesthe differentialequation (21) and -thebcundary
conditionsof equation (250).

(b) A uniform load distribution,for which

F41 = 1- ta (253)
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The shear lag function

(254)

satisfiesthe differentialequationsand the boundary con-
ditions.

(c) A concentratedload at ~ = cc, for which

In order to obtainthe solutionin this case, there may be
written

which satisfiesthe differentialequation(31) and the
boundary conditionsof e uataon (“250).

7)
The transition

conditionsof equations 24 aad (25) determinethe con-
stsnts A and B as follows: ..

A sinhK(l+Cc) - B sinh tC(l-~c)= O
(257’)

A coshK(l+~G) + B coeh~(l-~c) = ~ 1
1~ Ec=

Solving for A and B there is obtained

.
.

—.—

.
“

.

.-

.
.
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In particular,when the load acts at midsQan, ‘

F42a = 1- IEI ~ ‘3Aa_ sinh IC(l-lgl)1 ‘4aa (259)K cosh K

The magnitudeof the effective sheet width at the sec-
tion of greatestbending moment, where F = 1, is of par-
ticular interest. This quantity iS- calculatedaccording

‘effto equation”(2’i’).In what followsvalues ~f ,Y are ob-
..

tained as function @f the parameter ~-j$ ifthe:.. ‘
stiffnessparameter m is assumed to have the value 2*
The calculationsare carriedthrough for cases 40, 41s 42a,
and 42b, of,which42b is the case of a concentratedload
at the quarter-spanyoint.

.
The results,which are given in table XV and in figure

18, indicatethat, for a “l~addiatrihutionsymmetrical
about the midspan section,the effectivesli~etwidth becomes
smalleras the entire load is more near,lyconcentratedto-
ward’the midspazisection. It is seen tha’~moving ‘the co~-
cent~ated.load’awayftiom”mi’dspanr:d~c’eq.s,tillMore ‘the
effectivewidth. - “ .,.......= ..—

It should”benoted that not only are”the resultshere
‘obtainedapproximate,much simplifiedsolutionsof the
‘effectivewidth problem for beams“withisotropiccover
sheets such a-sh&ve been obtainedpreviouslyby von ~iirti~nf
Schnadel, and others, but that“thepresent ‘resultsgo fur-
ther inasmuch“asthey perm”ittaking into account the ef-
fect ‘.of.spagwise“stiffeningof the 4h8etsby assumingan
appropriatevalue of the ratio G/E;-., ., -...

.. . . .,., , ,.,

BEAMS ON TWO SUPPCJRTS.WIT”HO~”ERHANGINGENDS ,...,, -.““.“ . .
,, .. . ..

The method for obt”-ainingthe solutio’nfor ~e”arnson “
t~~ supports“.wLthovar.hangin”gends may ~l”s’c,beindicated
here.- If it i’sasstime’dthat the “coord.inates,”’ofthe ‘sup-’
ports are again e= - 1 and t = 1, the coordinatesof
the ends of the beam may be denoted ‘by ~1(< - 1) and
g~(> 1)’. l?h~%endtng-momb”ntfuncti’onW “i=now defined
in ‘therange ‘;~l~,~.~ !2”.”The d’iffer.8htiaX”eq-uation.is. ..
the same as b~f”ore.-d the haundary o,onditignsfor the
free ep,dsand th”e..tiansi’tionconditionsat the points of,,
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f(t’~)=0, f(ia) =0 .(260)

f@) = fr(d (261)

fl@l) - 3A= rl%@ =..fr(*”1)- 3Aa F=’(*l) (262)

No e-xaqplesof application will be considered here.
It may be said,however, that case 3b of Q cantilever
with concentrated”load can be interpretedaS the solution
of a problem which belongs in this discussion.

—
* ““
.

—

—
1;1- DETERMINATIONOr SHEAR LAG IN STATIGALL~UNDETERMINED

BEAMS AND ITS EFFECT ON THE DISTRIBUTION

OF BENDING MOMENTS

I’orstaticallydeterminedbea’rns,th??tis, for canti-
lever be~us and for beams on two moment-freeend sup-
ports, the distributionof losds is determinedby statics
and,the aim of any beam theory is :onlyto relate the given
moment distributionto the distributionof stressesover
the cross sectionof the beam. When staticallyindetermin-
ate beams, such as a beam with two clamped ends are con-
sidered,the “distributionof momen”tsfor given load de-
pends on the conditionsof support,...Thiscondition leads
to the question as to whether the distribution of moments
as given by the strength-of-rnateria~sthsory is modified
on the basis of a more exact theory of bending; for in-
stance, on the basis of a theory for box beams which
takes into account the shear deformationof the cover
sheets. The results ~btainedin “t~efollowingdevelop-
ment show that not only is the distribution-ofstresses
over the cross sectionaffectedby modi~fcationof the
.assumptio~sin the theory of bendi”ngbut that also their
resultantbending,rnomentis in generalaffected,except
when the distributionof bendingm@.mentsis gi,venby
St”atics.

Since this quest’ionhas not been previouslytreated,
it was thoughtworth while to consider it in concoction
with the relatedwork on staticallydeterminedbeams even
though it se~ns of less p~acticalinterestip aeronautical
applicationsthan the correspondingtheory for cantilever‘
beams.

.
.

.

.

-.

.
.

.
.
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‘I!hetheory will be given here only for beans of uni-
form cross section,either with both ends clamped or with
one end clampedand the other end simply supported. The
method of solutioniS a modification-of the le-ast-worlc
method as applied to the problem ef the staticallySUp-
ported beam. .-

For the yet indeterminatedi~tributionof bending mo-
ments for given load distribution,there may be assumed

M(x) = Me(x) + &f.+ Ml : (263)

where Me is the moment distributionof”elemehtarybeam
theory and M. and Ml contain the effect of the shear
deformationof the cover sheets.

Correspondingto the distributionof moments of equa-
tion (263), the normal stress in the cover sheets is as-
sumed in the form

Qx,y) = ah(x) - (:-5)‘(x) (264),

where

ah(x) = Oe(x) + 00 -1-al ; (265)

As has been shown in reference 2, the shear stress in the.,
cover sheets follows from ~+z

.ay= O in the form .—

, T(’,y) = (ycrb’(x) -~”m-. ~) s’(x)
w

(266)

Again, as in th~ case of the staticallydeterminedbeam,
these expressionsfor,the stresseshave to be introduced
into the ex~ressionfor the internalwork W Qf the struc- —
ture and ‘W has to be made a minimum. New, however, it
is to be tak”en“intoconsiderationthat not only the func-
tion s(x) but also the constants a. and CTi are-to be
determinedby the minimum condition.

If the two ends of the beam are taken at x = ~ and
at x = - 1, W is given by .L--
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‘w‘=//[-J t

ax2 “+ ; T2
1

1 ’21W
dydx+–—

E ha.. r
~-dx(X,W)j” dx

-w :
,- L

--if -w

Er
+—
G 1

Y(ael(x) + %-:(rn- ~)s’(x)]}dydx

Lr[21W
+ s,= .:-(: -l)”s(x)~dx (26’7).Oe(x)+cro+a”

-71 . . . .. .— .-

and 6W as given by equatidu(26”8)has to vanieh if W
is to be a minimum. It is seen in equation (268) that
ti~ereare three variations i~o, /801,”and ES and.those
are in generalarllitrary- exoept for a r~lationbetween
600 and ISGI when the Uoment at one end of the beam is
known - S0 that, for any stat-i~allyindeterminateproblem,

—

—

e.
.

.=

.

—

.. :
.-

—

. .

.3

Ii

.4

e
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equation (268) implies more condl.tionsthan are obtained
in the staticallydeterminatecase. Evaluation of equa-
tion (268) will make this statementevident. If the inte-

?)ration with respect to y is carried out in equation
268 , it followsthat .— .——

....._
f 2

+.2:[%(:(”0’+?)-:(:-:)s’)

Is
31W + Is

= wthz, m =—
Iw .+Is

if terms with the same variationsas factor are combined,
and with Ub = ae + a. + al ~ ,

1 it fOllOws that ““”“

1

-2
7!

(Continuedon p, 60)
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1

f

,.. .<
+ J-:
. [88(X)‘Ys--

.

h-l) + (rn2
-F +

1
0.

-1 .,

+ IW[-(:- ,) Gb -I-(: -$ ~r].x .-
b

—
—

The terms containing “s in the f~rat integral and the
.-

terms containing CTb in the third integral of equation
(270) cancel since -—. . .<

If the last integralis integratedby parts, it follows *
that

●

.

-1 ‘-.

With -L,,

._

.

...—

—

——

.
.

,-
“
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r

t.
and

mz 2m 1 m-1 (m-3)—.—
9 9 ‘z+= 9 ‘==$(: -;)

it follows, finally,that

Pz

-L
.

.

.

.

.
.

If the parameters
(272)

Aa = 35rn - 21 6G la ha
# K2=— —

35m2 - 42m + 15 x ~a

are introducedas before, equation (272)can-be written

1“

o = 6(30I ~b dx “. --- .-
.
-2

(Equationcontinuedon p. 61)
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(
—— —— -—

){[ 1}
+1 sL3A2ab’ 6s’

‘13 G3557 9
(273)

-b

Since s is independentof U. and crb so far aS equi-
librium conditionsare concerned, bhe same is true for
66 and, in order that equation(12) he true, it is there-
fora necessarythat tlieintegrandof the third integral
vanish. Furthermore, because of this independence,the
integratedpart of equation(273)._hast.ovanfsh individu-
ally. Hence, if for ~b equati@n (265) is again intro-
duced, the f~llowingset of’equationsis finally ebtained:

—

*
.

..

.

.

‘+ ‘(;-;) s((x)]}dx (274)“

sit(x) - $ s“(x)= 3?$ a’bqx) (275)
%

f s’(x)-
/[ ( )]

3A=.Uel(x)”+ + 8S(X)12
J

=0 (276)
-1

As in the staticallydeterminant=case, ea+uations(275) and
(276) are the differentialequatio~~x;ithboundarycondi-
tions for the shear-iagfunction The new result
is containedin equation (274),which ~epresentsone or two .
conditionsaccordingto whether Go aria cl are aepenti- *
ent.upon each ather ana which, therefore,in either case

.

is suffi’ciontto determine 00 and al.
●

At this point, it seems bestito consider separately .
the various cases correspondingto a beam with two fixed
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ends and a beam with one end fixed and one endsimply sup-
ported and to consider specificex~rnples”showing.the&f-
fect of the shear deformationof the cover sheet6 on the
stress distributionand, in particular,,onthe mom~nt &is- “
tribution.

BE&M’WITHBO& ENDS BUILT IN

. . . ,,

No relationbetween cro and &l follows from equi.llb-
‘rium considerationsaria”cotisequentlyequation (2’74)is
equivalentto two separateconditions. The integralsin-
volving” Oe(X)”vanish beb~use of”the condit.ion~nf Gup-

port, since cie= censtant~, and where in this connec-
tion “w stands for the deflectionof the beam’‘.;

.-

The %oundary conditionsof equatien (276) assume their
proyer form ift for fixed supports,the multipliersof
8s(2) and of 5s(-2) vanish. If the in%s”~rationin
equation (274) is carried out, therefore,t~e complete
system of equations (274) to (276) reduces to

U. = ()

S’r(x) - $ s(x) = 3f aetf(x)

x= * 1, s’(x) - 3A!
( )
(X&l(x)+; .0.

(277)

= O“ (278)

(275)

(279) -

This system of equationsindicatesimmedifitelythat the
distributionof bending moments is given by the elemen-
tary beam theory remains.unchanged“ifthe load-andthere-
with the moment distributionis symmetricalabout the
middle of the beam because,‘fort-histo be’the case, al -—

...
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must vanish while 00 van”ishesas the consequenceof the
least-workconditions. ‘

In order for the ?)endingmoment distributionof the
built-in end learnto be affectedby shear lag, it 3S
thereforenecessarythat the lnad distributionhe asym-
metricalabout the center of the beam.’

The follcwingexampleswill be solvedexplicitly:

(1) beam with uniform distributionof load (case“43)

(2) learnwith antisvmmetricaldeflectionof both
ends (case 44)

L-

.

—

(3) learnwith antis mmetri.callinearlydistributed
load (case 45Y .-

—

The first example iS taken becau~e it is one for which
shear lag is of surprisingmagnitude. The secondexample
is taken lecause it illustratesthe way in which modifl- .
cation of the moment distributiondue to shear lag iS 1

connectedwith a reduction”of..effectivebeam stiffness.
The third example is taken-t-oillustratethe way in which
the effectivemoment distributiondepends on the d~str~bu- *
tion of load.

The followingresultsare obtainedfor the three cases:

(a) For the distributionofstress accordingto ele-
mentary beam theory

I I
Case / 22CTe’’(x)/5e(2)C7e(X),/Oe(’2)~ ~O*l(x)/~e(~) j

1 . . .
2- i —

( )
i :x

43 ‘A~-3xi 37 I 3
2 7

1 ~..”.
<=

x
44 i o

T

(
5 X3.45 -: :.-–— )

31’
(

-5.%
)

.15;
*

3 23 .-z
.

t
.

(b) For the.generalform of the shear-lagfunct”ions,
R

which follows from equation (275),
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(280)

.

s(x) = cl.,coshK ~ + Gz.sinh..~
,.

= + Spart ‘ .
2.

m
appro-
takes - .——

If the symmetrycondibi’onsare observedand th@
priate values of ~elr(x) are taken, equatifin”(280)
on the forms

Case ~ s .-. -.— -
I

43 1 AaC=coshK:-9—.. Ka-.

44 Gz sinh K ~
~

45 : (J2 la xstnh K~.- 45v—
I 2 kl

.-

If these expressionsare substitutedinthe boundary c@n-di-
tions of equation (279), thpre follows for Cn, if in addi-
tion se(t) =-1 is set.

b

Case I cnI
9Aa

..—.- --- -----

K sinh K
.

3Aa (1 + 01)
Kcosh K-. —

45
. K cosh K . .

The shear-lagfunction s become,sin the three cases

Case s(x)

43 (281)*
*

sinh K Z
+“ (l+u~) 1

(282)
cosh K ..

.
. 44

45

-.—— --
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The values of VI hive now tg b.edeterminedby substitut-
ing equations(282! and (283) in-equation(278). If -
21s/1 = 3 _ m Is put, there fol”~ows

Case

44 -al=* , ~=3 Ad(3-m)
1+111 ~-.’ @-:) ta:h K ] (284)Ka

The distributionof normal stress in the cover sheets
is again obtainedfrom equations(264) and (265) in the
form

CYx(x,y) Cqj(x) + a ~

CTe(t) = re(t) “-(3$);:;; “-)
,

with s(x) and U1 gf~en, fhorthe cases considered,by
equations(281) to (283). When ae* alP and s are sub-
stitutedin equation (286),it-followethat

Case
———

43

44

45

.-

.
s

?’-7’

.

.

——

(TJx,y) .--—..-=
ffe(t) ‘“ ‘“”

3x~-~
().5 T 2 -(:-WHO:::::”;] ‘“””“:

(287)

.

[

sinh K ~

‘ 1
&(6+(J1+ 15

)
15 x. ~ —— (289) “.=.

cosh,.K ~2 w
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,., , ,,The formulas,(2,.87)to (289) have been evaluat~dfor a
....

typ~”cal%e”am‘withr
“ 27E W... . . :,=..
—— = ,0.3 (span length-,2t.32G L equals

five tim~s the ~idth
. . ,.--. ...=

2“W for isotropiccover sheet)Lnd
with equal contributionof side webs and cover sheetsto
the stiffnmfisof ~,hebeam (m = 2). From equation (273),
it fo”llowgthat for tMe parameters ~2-.= 0.6Q0.,..an@ —

l’h,~values of the end-momentcor~ecttm~ .qz.
~a~e6’~~~~”calculatedfrom’equations”(284) and (.285).
Table YJT1containsthe numericalr“esultsfor the distribu-
tion of stress. The data containedin table XVI are given
graphicallyin figure 19.

!“ In order tn explain the large”amoutitof shear lag
nea~ the ‘fixedends of”the beam in”the case“ofthe “~n~-
formly distributedload, it may be said’that the part of
the beam hear the fixed ends where the moment curve is
positive can be consideredapproximatelyas a cantilever
beam of correspondingly.shorter span ~c. Since Ic = 0.4 Z;
w/2c = (1/5) (19/4) = 0.5. I’rornequations(~0)and (26),
it follows, for CLJ2C,o)/’o.Jlc)for a cantileverbeam of
length Lc and width 2W with-uniformlydistributedload,
that ,..

and with

K’ = 12.():A2 + , w- rE2m = 2, A,= o.83, - = ~.5,
. . Ic E=T

..”
a=(tc,o) ,,

= 1- 2 X 0.83 X 0.666 X 0.5.= 0.447
ab(tc)

and this result agr”eesalmost exactiywith the correspond-
ing stress ratio obtatned

-. -.
for the l~nger,beamwith both

ends fixed. . .
● -,._
m

—,-
In case 44, one-halfthe beam behaves approximately

8 as the correspondingcantile.ierwith concentratedend load
. and the amount of shear lag bears out this analogy. (See

fig. 19(b).)
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Yor tchelinearlydistributedantisymmetricaldistri-
bution of load (case 45), shear lag is even more pro-
nounced than for the uniform, symmetri.oaldistributionof
load. The reason for this conditionis that the length of
the correspondingcantileveris even less, that is, Zc =
0.2 1.

In connectionwith the modificationof th@ moment
distribution,it is seen that shear lag in the two cases
consideredreduces somewhatthe value of the maximum mo-
ment,in case 44 by about 4 percent and in case 45 by about
‘7“percent.

Table XVII containsvaluee of 0~/se(3) as a func-
tion of w/2 for three values of m in case.4“4‘andfor .
m= 2 in case 45, and the data containedin the ta%le “
are representedin figure 20.

The questio~arises as to why there is no mo”dJfica-
tion of the moment distributioninthe symmetricalcase
while a modificationoccurs in the Antisymmetricalcase.
While it is felt that a %etter ~hysical interpretationof
this fact should still be attempted,the fgllowingdif-
ferencebetween the two cases is evident: In the symmet-
rical case, the possible superimposedstate of stress, due
to go, is uniform and involvesno shear st”ress;while
in the antisynme”tricalcase the superimposedstate of

m

—-

.

stress,due to al# is nonuniform,involves shear stress,
and is thus affectedby shear lag. .An exp’lanati*nshould
also be given for the fa”ctthat, althoughthe effective
beam stiffnessin the symmetricalcase f_sreduced owing to
shear lag near the two supports,this spanwlsevariation
of beam stiffnessis not responsiblein itself for a mod-
ificationof tihemoment distributionof elementarybeam
theory, accordingt.owhich the effectivebeam stiffness
does not vary..

BEAM WITH ONE END BUILT IN AND 0~ END SIMPLY SUP20RTMD

I&-it is assuned that the end x = - 1
ported, it follows from equ.at-iog.(265)that

go - o~ .= ‘o

and hence
6U. -551 =’0

is-simplysup-
C

4

(290) a
_ c ...==

(291)

.-.
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If eciuatinns(290) and (291) are introducedin the main
system of equations(274) to (276)$ it foll_Owsfrom eq~a-
tion (274) that

. . ..-
1 ,.

Equation (275) remains unchanged, and equation (276) iOPa-
rates into the two conditions,, ,...,.,., .-.,... ...... .

S(--l)’”=0, sJ(2):-.3A2”“g-“~.(.?.)“=,o ./ .:”(.292).
... ,.-

FrOm equation (292), if it is obser;edthat again
.,. ..—

.

f:’:(l+s‘x=“onst~ru’d&6‘id= ..... : “
-1. ““. -“ - ““ “ -J . . .

= constant
. “[(’+’i)s:+]’- ‘o.‘. ,.: -z .-... . ..,“,.-. ...

b~cause’of the conditionsof.su~port,th~”s~batiotideter-
ninlng ul can be written as -...’

,,
h: %7 - ‘“’””~ O_i + 2—
K“2‘T 1Oe(t) + 2cr~-

(%;) S“?]= o ;.tigz)..
,,, . .

Since the calculationof ~xampl-esfrom t“his-pointpr.oc”eeds
-.

exactly as for the beam with two fixed ends ah-dsince no
.—<

basicallydifferentresults are to be expecte~~n? such
calculationshave been made here. It sheulabe nb~ed~,
hewever, that one of the cases consideredfor the beam

—

with fixed ends,“namely~the case,of,linear~ntis.ymmetri-
cal load distribution,. includesthe case .o,fa beam with-

* one end fixed and one end’’simplysupportedif the portion
of the beam to the right or.to the left of the center see-.

b ti’cnis considereda separateen,t~ty.... ..-
*
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CONCLUS1ONS I

. i

The followingconcI.usionswith regard to the problem
of shear lag in cantileverbox beams may be drawn.

The shear deformationof the cover sheetsmay be re-
sponsible,in actual cases, for stress increases of af5
muoh as 20 to 30 percent of the stresses ~redioted by the
elementary beam theory,

.
.Themagnitudeof the shear-lageffect depends On a

variety of factors,,of which two are found to be of
greatestinfluence:

1. the product of the span: root-widthratio of
the beam and of the squareroot of the ratio of the ef-
fective shear modulus and o.fYoungts modulus of the
cover sheets (t/2wR)(G/@i ia;

2. the,shape of the curve representing–theproduct
of the spanwisesheet normal stress of elementarybeam
theory and of-thethicknessof the cover..sheet, tab.

The magnitudeof the shear~~~ increaseswith de-
creasingvalues of (3/2w~)(G/~) .

Negative curvaturo of the tab-curve indfcatesrel-
atively little shear lag while positive curvature~ndi-
eates.hppre’ciableshear lag.

The present work indicatesthat taper in beam width
is of importanceonly insofaras it affects the function
t~b. Sufficientlyaccurateresults may be obtainedby ana-
lyzing, insteadof the beam with width taper, a substi-
tute beam of uniform width equal to the root width of the
tapered beam.

The presentwork also indicatesthat taper ificover-
sheet thicknessis of appreciableimportanceand should
not be neglectedin the analysis. Especiallynoticeable
shear-lageffect~ oacup at sectionswhere a rilscontinuous
change of cover-sheetthicknesstakes place.

The effect of taper in be~m height is‘incorporated
entirelyin the futictiontab, :

.

c

.
*

.

.
.-

—

A-

It is found thatiwithin the practicalrange the effect
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of a change of the relative stiffnessof the cover sheets .
and of the side webs includingflanges is very small, so .
that further calculationsmay be based an the assumption
~“feq,ualralative.‘stiffnesses. ,,

It is thought that by giving the explicitresults
fmr a gOOa many ~ample cases, an idea is given to the de-
signer of the magnitude of the effect and of its d,epen~-
ence on-design data. Z!he.results of the.calculations -—
should prove useful alsn for reasonableestimatesin those
cases where conditionsare somewhatdifferentfrom the
fineswhich were consideredhere. ______ ,=

Mo treatment.has been given to problems involving
beams *withnuts~metry about a spanwiseverticalplane.
The yros+nce Of a sllghtdegree of such ~psymmetryis be-
lieved to be Of little influenceou the amount of shear.
lag present. It would, however, be feasibleto extend the
analysis tn distinctlyunsymmetrical beamsand to evaluate
some typical cases.. . . “,$, .

A furtherpOs~ib~e efiension of the work wOuld con-
sist in the analysis of beams under combinedbending and
torsion loads. Such an extensionoffers no essential
difficulty. It is believed,however, that if a leading is
separatedinto a bending camponentand into a torsional
componentit will be found that shear lag due to.the tor-

.

sional compnnentiS considerablyless marked than that
due to the bending component.

—

A furtherpart of the prOblem which so far has not
been investigatedis the effect of camber on shear lag.
It is yossible to extend the work in this directionand
to analyze some typical arrangements. A reasonablepro-
cedure, which analysisshould prove to be correct,is ‘
th~ught tci%ea modificationnf the stresses“ofthe e16~--.—— —_

mentary theory in the camberedbeam by means of the calcu-
lated shear-lageffect for the beam without camber.

Department of Mathematics,
MassachusettsInstituteof Technology,
Cambridge,Mass., June 1942. —.<.

--—
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TABIEI.- NORKALSTRESSESA~G THEEDGEANDALONGTHECENTERTJm OF00VERSEEETSFOR
BEW OFUNIFORXOROSSSEOTION.

0:1
0.2
0.3
0.4
0.5
0.6
0.7
O*8
0.9
1.0

:01
●04
.09
.16
.26
.36
.49
.64
.81
1*OO

-:048 ;042
-.072 .0s8
-.082 .146
-.082 .216
-.073 .298
-.049 .393
-.003 .492
.086 .683
.250 .643
.688 .628

-;-006
.016
.063
. 1s3
.226
.344
.489
.6,68
.803

1.186

.0.
0.126
0.200
0.375
0.Soo
0.625
0.’?60
0.876
0.960
9.976
1.1)00.

o
:O&

.053

.125

.244

.4e2

.670

.867

.927
1.000

-t036
-.071
-.099
-.114
-.089
-.019
.201
.464
.685
.728

0
.026
.063
●119
.201
.310
●435
.SS6
.648
.637
.S16

-:010
-.008
.020
.0s7
.211
.416
.737
1.012
1.122
1.243

o
0.1
O*Z
0.3
0.4
0.6
0.6
0.7
0.8
0.9
1.0

0
:1

::
.4
.6
.6
.7

::
1*O

o
.001
.002
.004
.008
.01s
.027
.061
.096
.178
.sss

?099
.199
.297
.396
.490
.682
.666
.736
.781
●778

%00
.201
.301
.403
.605
.6o9
.?1?
.032
.9E9
1.111

%/i F3s fib 6CVM6. 6(s,W)/w,
o 0 0 0 0
0.1 0 -.018
0.2 -.043
0.3 :
0.4

-.oe5
o -.162

0.43 0
0.6

-.221
0 -.303

0.66 -.204
0.6 :: “ -.124
0.7 .4
0.8

-.000
.6 .136

0.9 .8 ::3;
1.0 1.0

.012

.029 .

.057

.108

.148

.202

.236

.2S3

.397

.609

.686

.5?7

-.006
-.014
-.02s
-.064
-.0?4
-.101
.032
.169
.402
.646
.907
1.212

O*S
0.6

::;
0.9
1.0

0
.02

%J

.50

.52

.58

.60

.82
1.00

0
-.070
-.101
-.079
-.002
.159
.026
-.011
.034
.179
.401

0
.072
.147
.233
.322
.394
●503
.587
.657
.700
.679

-%06
.046
.154
. 32a
.653
. S29
.676
.691
.879

1.160
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TABLEII.- EFFECTIVEWIDTHAT

TeohnloalNoteNO.893

BUILT-INENDOFBEAMOFUNIFORMCROSS8ECTIOH.

0.076 24.922 .160 .099 0.15
O.lBO 12.461 . .306 .816 0.30
0.225 8.307 .439 .745 0.46
0.300 6.231 .561 .685 O.w
0.370 4.984 .676 .632 0.?0
0.460 4.154 .786 .584 0.90

(g: K
m

f.(o (2!#~ ~:
o 0
0.076 24.922

1.000
.230 .e58 :.226

0.150 12.461 .425 .752 0.450
0.225 8.30? .689 .6?2
0.300 6.231 .728

0.676
.609 0.900

=fgg$? K “ J’) (%). f%;
o 0 1.000 0
0.0?8
0.150
0.22t3
0.300
0.379
0.450
0.600
0.75C
0.900

24.922
12.461
8.307
6.231
4.$84
$.164
3.115
2.492
2.0’7’?

. .003
.166
.249
.332
.415
.498
.662
.819
.966

.946

.896

.847

.801

.767

.715

.638

.571

.613

0.075
0.160
0.225
0.300
0.376
0.450
0.600
0.750
0●900

F
?E:

3261 K -f.(l) (*). E;
o 1.coo

0:075
0

30.364 .101 .936 0.075
0.160 15.162 .202 .877 0.150
0.225 10.121 .304 .824 0.225
0.30C ‘7.691 .405 .776 0.300
0.3?5 6.0?3 .306
0.490 5.061 .607
0.600 3.?95 .809
0.75C 3.036 1●007
0.90C $?.530 1.199

; ;;; 0.376
0.450

●616 0.600
.653 0.’?50
.600 0.900

*
.

*

.

—.
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TABLEIII.-BXSULTAHTSTFCSSSDISTRIBUTIONFORBEAMSWITHTAPERIXHEIGHT.

x/L tws,o)/Lv# 6fkv)/a
o

0:25 .400
0.90 .667
0.75 - .857
o.e5 .919
0.90 .94?

o
.082
.071
.079
.104
.12’7

0
.345
.619
.004
.849
.063

0.——
.427
.690
.884
.964
.990

..

0.95 .974 .i50 .869 ,1.057
1.00 1.COO .202 .866 L.067

XIL q $, c+,oVC, W(%)lo
o

0:25
0

-:076
0

.100 .151 .07!3
0.50 .333 -.134~ .361 .319
0.75 .643 .061 .602 .663 .—
0.65 .781 .157 .6?7 .833
0.90 .S93. .230 .699 .929
0.95 .926 .329 .706 1.035 —
1.00 1.OQQ .463 . .692 1.154

TABLEIV.-STEMS BXSULTANTSFORBEAHWITHDISOONTINUOUSOHANGESINOUVER-SHEETTHIOKNESS.

. X/t TF* T~s t%w’k&s.tlr(x,w+’ee
● o 0 0 0

0%26 .125 .009 .119 .128
“ 0.260 .250 .024 .234 .258

0.3?5 .376 .0$6 .336 .393 ;
. 0.5C0 .500 .120 .420 .540

0.626 .626 ●0s1 .571
0.760

.652 ——.
.750 .093 .666 .781

0.8?5 .675 .166 .’?65 .930 .
1.000 1.000 . .342 7’?2 1.114 --

.“

-, .w/7 TF9 Tfq +6M/<6’, +6@\k~G,
o 0 0 0
.016 -.046 .047 -.00030~125

0.260
0.376
c’.500
n ~9G

.063

.141

.260-e>

-.056
-.03%

.101
-IRs

---
roe

. ...”-

0.675
1.000

. ““”

.766
1.000

.“”,

.211

.567

. “c, ”

.625

.622

.043

.129

.260

.393

.561

.8ii6
1.189 :

0.125
0.260
0.500
0.625
0.750
0.s00
0.626
0.660
0.875
0.900
0.925
0.960
0.975
1.000

.014

.063

.2W

.391

.563

.640

.681

.722

.766

.810

.856

.902

.951
1.000

-.056
-.077
-.066
-.023
.072
.136
.177
.224
.260
.346
.398
.463
.642
.637

.051

.114

.293

.406

.516

.549

.563

.573

.579

.680

.590

.594

.6s9

.S75

-:00-4
.037
.228
.363
.666
.685
.740
.797
.859
.925
.S88
1.05’7
1.131
1.212

— ..

-,
—

—

—

.-

-.

.

--- . —-, ._ ----

\

.

—

,
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TAELEV.-NOmAL STm8SESmR sm4s WITH00IiOENTRATEDTIPKIAD.

X“,’L F, (. (7(s%),q t3(n;uv60
o 0 0

0%26
o

.222 .036 .199 .234
~~.~50 .400 .040 - .374 .413
0.3?6 .545 .939 .519 .558
?.500 ,667 .939 .640 .680
0.750 .05’? .061 .817
@.e76

.877
.933 .100 .86? .967

1.000 loco .MS .e76 1.062

,..—

X*/l ~% f,,.It 6(X?0)/6. C(<d)te-,—.. ..... —.
o“

0f125
o 0

.395 .llQ ._?320.. .
C.25C

.433
.640 .109 .56? .6?6

0.375 .793 .090 .734 .“”.e23
0.500 .889 .0?9 .s41 .913

..—..

0.?50 .280 .CM .949 .995
0.879 .996 ..33a
1.000

.9?0 I.ooa
1.CCO .034 .977

,.
1.011

%“/1 F13 & 6($:0)/% (wfw~

o 2.000 0:” 2.000 2.000
3.125 1.?76 -.036 1.801 1.’766
0.250 1.600 -.040 1.626 1.6e7
0.37s 1.455 -.039 1.4al
0.500

1.442
1.333 -.039 1.360

0.750
1.320

1.143 -.061 1.183 1.I.23
0.%?5 1.067 -,10CY 1.133 1.033
1.000 I..00G -.la5 1.M!4 .93s

TABLEVI.-NOFUAAL8TmmEe FORsmts WITHUNIFOmLYDISTRIBUTEDmm.

x“/1 FIS f!r G(P:o)Js r(x;u)/r.
o 0 o’ 0 0
0.125 .028 -.035. .051
0.250

.016
.100 -.038 .125 .097

0.376 .205
0.600

-.033: .2!26 .194
.333 -.021

0.750
.347 .326

.643 .062 .60Z .664
0.1376 .e17 ‘.18? .692 .e79
i.Ood 1.000 .449” .70i 1.160

0“ o
9?126

o 0
.049 -.042” .0?7 .035

0.250. .L60 -.030 .180 .160
0.3?5 .298 -.o~~:. .~cj~-”- -n~~~
0.500 .444 .00? .439 .447
0.?50 .735 .0?6 .684
0.875

.760
.e71 .L62” .763 .925

1.000 1.000 .33’? ..776 1.112

%71 15g fM &&)Fd C(<tiyse
o 0 0“-.0 -“o
0.125 .125 .000 .126- .125
c.260 .250 .Oo1 - .249
?.3?5

.250
.376 .003 .373

0.500
.376

.500 .009‘ .494 .503
0.750 .’?60 .061 .709
o.a75

.?70
,a75 .U3 .7?9 .923

1.000 I.000 .317- .789 i.2.06

--

.

..

.-
.-

—

.,

.-
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TABLEVII.- NORHALSTRESSESFORBEAKSWITHLINEARLY

X’fl F1s h, . 6f~;dfi,

77

INCREASINGLOAD.

.
b G(:;u)/R,

o
0.125
0.250
0.375
0.500
0.750
0.875
1.000

0
.003
.026
.077
.167
.462
.715
1.000

0
-.021
-.040
-.056
-.063
.026
.217
.649

0
.01?
.062
.114
.2oe
.465
.570
.56e

-:003
.012
.050
.146
.491“
.787
1.216

-.
.-.

#
.. . . .

.—

9

Fz# f,,F*/’L 60’)]/$,
0.125 .006 -.028 .025 -.oa3
;.260 .040 -.047 .370

.112 -.054

.2i?2 -.049

.551 .04e

c
0.375
C.900
0.760
o.e75
1.000

.025

.@4

.206

.S67

.833
1.187

—
.148
.255
.619
.621
.626

.762
1.COO

.212

.5’51

x’/L FZZ f%= G(.8P0 v(x:d)l~
o 0 0

0?125
0

.016 -.028 .034 .0n6-
0.25CI .063 -.039 .068 .050
0.373 .141 -.044 .170 .126
0.500 .260 -.042 .278 .236
0.7B0 .663 .044 .633 .577
0.675
l.ooG

.

.
.766 .202 .63i .833
1.COC .549 .634 1.L83

STRESSESFORBEAMSUITH00N0ENTMTEDKMD ATlLIDSPAN.

—

TABLWVII1.-NORMAL

S“IL E, fL, ~(<e)p.5fxfJ)/%
o

0?125
o

:
.0

-.007 .005 -.902
0.260 0 -.028 .019
0.376 0

-.009
-.091 .061

0.600 0.
“-.030

0.626
-.267 .178

.308
-.089

.049 .275 .3240.760 .571 .128 .486
0.875 .800

.614
1.000

.274 .617
1.000 .538

.891
.642 1.179

.-

0.126
0.250
0.376
0.600
0.625
0.750
0.8?6
1.000

-.009
-.033
-.10?
-.312
.126
.173

.008 -:003
DX? -.011

-.036
-.104

c__
.0?1
.208
.295 .421
.53s .711

73 .071 .944
1.148

0
.379
.653
.863
1.000

___

.27_

.444 .704
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TABISX.- SORMALSTR4SSESFOR BXAW WITH OHIFZULT DIS2RISOT2D
MAD AWD VARIT2(?S~IFF3ESSPARMETER.TASIXIX.- m0~LB~6.m~FOR 2E4HSWITHU21FORMLY

.

$*A f% fL4 6(JW, 6(+]/6.
o 0 0 0 0

0:125
0.250
0.37s
0.503
0. 6E8
0.760
0.87B
1.000

:02s
.lW
.205
.333
.4s1
.843
.817

1.000

-:042
-.041
-.037
-.031
-.015
.036
.200
.701

.043

.115

.Z1.s

.346

.4S6

.630

. 74s

.743

:001
,074
.1s1
.3s4
..471
.668
.943
1.444

m
o
.0s3
.167

Fw
o
.022
.074
.14s
.222
.4C4
.593
.690
.794
.s96
1.000

{w
o
-.01’?
-.olq
-.014
-.olz
-.002

.Oxa

.062

.122

.220

.3’79

o
.034
.0EJ5
.162
.2s0
.401
,674
.642
.712

0
.017
.069
.1.%
,21s
.399
.S02
.710
.s34
.970

1.126

.250

.333

.603

.66?

.760

.s3s

.917
1.000

.749

.?47 o
O.lm
0.’350
0.375
0.606
0.629
0.760
0.876
1.000

0
.049
.150
.2.9s
.444
.592
.736
.s71

1.000

-~06S
-.033
-.014
.002
.021
.060
.173
.506

0 0
.016
.139
.2s9
.446
.605
.773
.9s0

.069

.172

.303

.444
-564
.71s
.s0s.(x! :071 -:024

.167
:087 &

.19s -.oa2
.260

.195 .197
.3Z7 .014 .317

.333
.s31

.444 .024 .42s
.600

.45E
.640 .035 .617

.S&7
.652

.790 .04s .768
.750 ,849 .061 .s0s
.833

:E
.907 .oa4 .851

.917
.936

.965
1.000

.lm .s74 .897
1.000 .1s6 .a77 1.0s2

.814 1.321J

%“/l. ~,. f31 61’t*)/4t6(+p’6=
o 0

0:125
0 0

.028 -.029 .057 .02E
-.033
-.o27
-.olz
,016
.069
.165
,Sm

0.260
0.375
0.500
0.626
0.760
0.675
1.000

.100

.205

.333

.4s1

.643

.8.17
1.000

.133

.231

.346

.%5

.574

.662

.664

.lti

.206

.333
;&l

.817
l.lxloX“k

o

F=
o

0.126
0.25
0.375
0,500
0.625
0.7W
0.876
1.000

.126

.260

.375

.500

.626

.760

.076
1.000

.W4u :125 :E5

.rMo7 .250 .P60

.001 .375 .375

.cx14 .497 .501

.017 .814 .661

.051 .716 .767

.132 .7s7 .919

.229 .200 1.100

%bh FX3

j?% ~:

0:500 .444
0.625 .592
0.760 .736
0.s?5
1.006 1:%

J72

-%33
-.026
-.CM3S

.OM?

. 03s

.079

.146

.2s4

d(db, 6[+),6
o 0
.0s3 .0441
.185 .160
.306 .Ws
,433 .444
.553 .592
.666 .735
.726 .s71
.740 lam

4
‘. ● .

. .
, I
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TABLE XI.-NORMAL STRESSESFOR BEAMS

Ho.e93

WITHUNIFORK

79

LOAD.
.

xyl F}3 f,, Sk;)[6, c@/6,

o
0.125
C!.250
0.375
0.900
0.625
0.’?60
0.s75
1.000

0
.049
..160
.298
.444
.592
.?35
.871
1.000

-%0
-.042
-.030
-.002

.031

.094

.217

.463

,0
.083
.188
.317
.446
.5’71
.672
.726
.692

0
.033
.146
.2S8
.444
.s02 .
.’766
.943
1.154

x*,L FJ4 f34 6(%:,)/&, %:4 /sO

o 0 0 0
0.126 .088 -%s0
0.260

.127 .068
.256 -.024 .272 .24s

0.376 .433 .010 .426 .436
0.900 .593 .037 .560 .605
0.62S .728 .065 .6s5 .750
0.750 .S40 . 10? .?6s .s?5
0.875 .929 .188 .804 .992
1.000 1.000 .34s .768 1.116

. .
. TABLEXII.- NOBMALSTRESSESFURBEAMSWITHNO SPANWISEVARIATIONOFEXTREMEFIBERSTBXK!S.

XW{z 5s f,r ‘~s>)b, 6(s:u)B#
o 1 0 1 1
0.125 .011 .993 1.004
0.250 i .013 .991
0.375 1

1.004
.015 .990 , 1.005

0.500 .01s .989 1.006
0.625 : ●026 .9s3 1.009
0.760 ‘ 1 .044 .971
0.s75 1

1.015
.083 .944

1.000 1
1.028

.164 .891 1.056

F36

.
b

0 1 .0501 .96?
0.125 .0501 .96’?
0.260 : .0502 .967
;.;:; .0610 .966

? .0550 .963
0:620 1 .0680 .955
0.750 1 .1010 .932
0.875 1 .1740 .884 1.056
1.000 1 .3160 .?90 1.105

1.0L7
;:;s)

1.017
1.018
1.023
1.034

..— —

.-. _—-
—

—
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TABLEXIII.- NORMALSTRESSESFOR8EAMSWITHLINEARANDQUADMTIOTHIOENESSTAPER.

x*tl F37
0
0.125
0.250
0.375

. .
0 0
.125 .003
.250 .008

... . .376 .017
0.500 .500 .035
0.626 .625
0.750

.0?1
.750 .144

0.876 .975
1.000

.324
1.000 .609

.123 .126

.244 .eb3

.363 .381

.4?7 .512

.578 .649

.654 .?98

.659 .983

.594 1.203

)?/’1 FJ$ $>s G(s%)/ro ci(&f)/60

o 2.0?0 -.300
0.126 ; 1.268

1.690
.161

0.290 1
1.419

.799 ; .468 1.266
0.376 .536 .643
0.600 ;

1.178
.389 ; .?41 1.130 ‘.

0.626 .322 .786
0.750 ;

1.10?
.298 .aol

0.875
1.099

1.000
.3?7 .749

:
1.126

.662 .559 1.221

X+1 & f,~ c7::o)/u, c(&O/So

o 0
0:126

0 0
.125 .007 .121

0.260
.lm

.260 .016 ; .239
0.3’76

.266
.376

0.600
.032 .354 .388

.900 .060 .460 .620
0.625 .626 .115
0.750

.549 .663
.760 .220 .603

0.876
.823

.875. .427
l.eoo 1.000

. .593
.837

1.017
.442 1.279

TABLEXIV.-EFFEOTIVESHEETWIDTHATTHEFIXEDENDOFA 8EAMWITH8HEET-THIOKNESSTAPER.

0:076
0.160
0.226
0.300
0.375
0.460

24.922
1.2.461
6.30’7
6.231
4.984
4.164

:163
.319
.467
.609
.?42
.e67

;897
.809
.729
.66e
.604
.653

i%%
o
o.&+5
0.30
a.45
0.60
@.76
0.90

0.076 24.9Z2 .166
0.160

.896 0.15
12.461 .332 .801 0.30

0.226 8.307 .498 .?15 C*45
0.300 6.231 .662 .638. 0.60
0.376 4.~84 .806
0.460

.576 0.?5
4.154 .948 .519 0.90

—

m.
—

.—

—

o 0
0.0?6

1
G4-.iii

0.160
.239 ; .862 ;.225

12.461 .468 .736 0.450
0.225 8. .3U7 .658 . .640 0.675
0.300 6.231 .837 .564 G.900
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TABLEXV.- EFFEOTIVEWIDTHATTH2SECTIONOF NAXIHUMBENDINGMOMENTFOR
BEAMSONTWOSIKG= S~PORTS.

al

“.

.

.

F-7E ~ (%A L*---- -

3ZG1. C#tz48 L 41 C.(.~~ GW 42b

o 1 1 1 1
.::m” . .979 .982 .895 .863

.921 .932 .801 .743
0.45 .841 .8E6 .715 .642
0.60 .?sa .?71 .638 .560
0.75 .672 .687 .571 .494
0.90 .699 .612 .513 .442

TAHLEXVI.-NOP#ALSTRESSESFORA BEAMWITHBOTHENDSBUILTIN.

X/t F43 d$o)rca cfw)fa
-.50 -.40 -.s5

0?2 -.44 -.34 -.49
0.4 -.26 -017 -.31
0.6 .04 .02
0.8 .46 :$ .50
0.9 .’?1 .46 .84
1.0 1.00 .44 1.26

Xfl. F4+ c(c@/.s,, 6(?jti)/r*

o 0 0 0
0.2 .192 .192 .182
0.4 .3s4 .3s2 .385
0.6 .576 .659 .683
0.8 .766 .’?05 .796
1.0 .957 .745 1.062

d~ ~Fqr~ct. F,r C(x,by% Wx,dyra
o 0

-%8 -~294
o

0.2
0.4 -.60

-.196
-.529

-.343

-.,36
-.347 -.620

-.<
u .08 .(
0.9
1.0

403 -.19?
024 .063
.406 .136
.928 .: .063

.47
1.00

-.506
.010
.535
1.360

—

-. -—L-

.-
.. -.

——- .

. . .
.—

—.

.-

——

TA2LEXVII.-RELATIVEDEOREASEIxEDGEMOMENT-cl/(~)etimDUETOSHEARLAG.

- ‘l~~G*)eUm.
cafe4+ Case 4S

[.~11 m-b=1 WL7 z m =2,5 -1-n=:

o 0 0 0 0
0.2 .09 .04 , .02 .o?
0.4 .27 .13 -06 .24
0.6 .43 .21 : .10 .42
0.0 .55 .27 .14 .5?
1.0 .64 .32 .17 ‘6.0

.

—. -.
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